A simple rmq problem

题目大意:给定一个长度为$n$的序列,给出$m$个询问:在$[l,r]$之间找到一个在这个区间里只出现过一次的最大的数。

注释:$1\le n\le 10^5$,$1\le mle 2\cdot 10^5$。


想法

我的第一想法是莫队。

结果发现是强制在线(离线我也不会...

想了想其实$KD-Tree$还是比较显然的。

我们设$l_i$表示$a_i$上一次出现的位置,$r_i$表示下一次。

紧接着我们把第$i$个数转化为三维坐标轴上的点$(l_i,i,r_i)$。

用$KD-Tree$维护直接查即可。

Code

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int v[N],lst[N],dic[N],nxt[N],d,l,r,ans,rt;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0,f=1; char c=nc(); while(c<48) {if(c=='-') f=-1; c=nc();} while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x*f;}
inline void Max(int &x,int y) {x=x>y?x:y;}
inline void Min(int &x,int y) {x=x<y?x:y;}
struct Node {int p[3],mx[3],mn[3],ans,size,val,ls,rs;}a[N];
inline bool cmp(const Node &a,const Node &b)
{
for(int i=0;i<3;i++) if(a.p[(d+i)%3]!=b.p[(d+i)%3]) return a.p[(d+i)%3]<b.p[(d+i)%3];
return true;
}
inline void pushup(int x,int k)
{
a[x].size+=a[k].size;
for(int i=0;i<3;i++) Max(a[x].mx[i],a[k].mx[i]),Min(a[x].mn[i],a[k].mn[i]);
Max(a[x].ans,a[k].ans);
}
int build(int l,int r,int now)
{
int mid=(l+r)>>1;
d=now; nth_element(a+l,a+mid,a+r+1,cmp);
for(int i=0;i<3;i++) a[mid].mx[i]=a[mid].mn[i]=a[mid].p[i];
a[mid].ans=a[mid].val;
if(l<mid) a[mid].ls=build(l,mid-1,(now+1)%3),pushup(mid,a[mid].ls);
if(mid<r) a[mid].rs=build(mid+1,r,(now+1)%3),pushup(mid,a[mid].rs);
return mid;
}
bool judge(int x)
{
return a[x].ans>ans&&a[x].mx[0]>=l&&a[x].mn[0]<=r&&a[x].mn[1]<l&&a[x].mx[2]>r;
}
void query(int x)
{
if(!x||!judge(x)) return;
if(a[x].p[0]>=l&&a[x].p[0]<=r&&a[x].p[1]<l&&a[x].p[2]>r) Max(ans,a[x].val);
query(a[x].ls); query(a[x].rs);
}
int main()
{
int n=rd(),m=rd();
for(int i=1;i<=n;i++) v[i]=rd(),lst[i]=dic[v[i]],nxt[dic[v[i]]]=i,dic[v[i]]=i;
for(int i=1;i<=n;i++) a[i].p[0]=i,a[i].p[1]=lst[i],a[i].p[2]=nxt[i]?nxt[i]:n+1,a[i].val=v[i];
rt=build(1,n,0); while(m--)
{
l=(rd()+ans)%n+1,r=(rd()+ans)%n+1; if(l>r) swap(l,r);
ans=0,query(rt); printf("%d\n",ans);
}
return 0;
}

小结:$KD-Tree$虽然是一个暴力,但是它的思想还是非常不错的。

[bzoj3489]A simple rmq problem_KD-Tree的更多相关文章

  1. BZOJ3489 A simple rmq problem 【可持久化树套树】*

    BZOJ3489 A simple rmq problem Description 因为是OJ上的题,就简单点好了.给出一个长度为n的序列,给出M个询问:在[l,r]之间找到一个在这个区间里只出现过一 ...

  2. BZOJ3489 A simple rmq problem K-D Tree

    传送门 什么可持久化树套树才不会写呢,K-D Tree大法吼啊 对于第\(i\)个数,设其前面最后的与它值相同的位置为\(pre_i\),其后面最前的与它值相同的位置为\(aft_i\),那么对于一个 ...

  3. 【kd-tree】bzoj3489 A simple rmq problem

    Orz zyf教给蒟蒻做法 蒟蒻并不会这题正解……(可持久化树套树?...Orz 对于每个点,我们可以求出pre[i],nex[i],那么询问的答案就是:求max (a[i]),其中 i 满足(pre ...

  4. BZOJ3489: A simple rmq problem

    设$i$的前驱为$p_i$,后继为$q_i$,把询问看成点$(L,R)$,有贡献的$i$满足$L\in(p_i,i]$且$R\in[i,q_i)$,询问的就是覆盖这个点的矩形的最大值.那么可以用可持久 ...

  5. bzoj3489 A simple rmq problem 可持久化树套树

    先预处理出两个个数组pre,next.pre[i]表示上一个与i位置数字相同的位置,若不存在则设为0:next[i]表示下一个与i位置数字相同的位置,若不存在则设为n+1.那么一个满足在区间[L,R] ...

  6. bzoj3489: A simple rmq problem (主席树)

    //========================== 蒟蒻Macaulish:http://www.cnblogs.com/Macaulish/  转载要声明! //=============== ...

  7. 【BZOJ3489】A simple rmq problem(KD-Tree)

    [BZOJ3489]A simple rmq problem(KD-Tree) 题面 BZOJ 题解 直接做肯定不好做,首先我们知道我们是一个二维平面数点,但是限制区间只能出现一次很不好办,那么我们给 ...

  8. 【BZOJ3489】A simple rmq problem

    [BZOJ3489]A simple rmq problem 题面 bzoj 题解 这个题不强制在线的话随便做啊... 考虑强制在线时怎么搞 预处理出一个位置上一个出现的相同数的位置\(pre\)与下 ...

  9. 【BZOJ3489】A simple rmq problem kd-tree

    [BZOJ3489]A simple rmq problem Description 因为是OJ上的题,就简单点好了.给出一个长度为n的序列,给出M个询问:在[l,r]之间找到一个在这个区间里只出现过 ...

随机推荐

  1. volley的框架安装与使用

    最后一步非常重要   不然会报错: publish = project.has("release")   替换为: publish = project.hasProperty(&q ...

  2. java.lang.String 字符串操作

    1.获取文件名 //获取文件名,即就是去掉文件的后缀 /** * mypic.jpg * 获取文件名 * 1. 先找到"."的位置 * 2. 从第一个字符开始截取到".& ...

  3. 微信小程序组件解读和分析:十四、slider滑动选择器

    slider滑动选择器组件说明: 滑动选择器. slider滑动选择器示例代码运行效果如下: 下面是WXML代码: [XML] 纯文本查看 复制代码 ? 01 02 03 04 05 06 07 08 ...

  4. git ---理论知识

    理论基础: 不要高估自己的智商,不要低估Git的能耐. 1.Git记录的 是什么? 记录每一次版本变动的内容 将每个版本独立保存 方便分支管理. 2.git的三棵树---工作区.暂存区域和Git仓库 ...

  5. VS2010 好用的javascript扩展工具

    工具1) JScript Editor Extensions 折叠代码 下载地址: JScript Editor Extensions 工具2) Javascript parser 以树形方式查的代码 ...

  6. echarts 外观效果修改

    <!DOCTYPE html> <html> <head> <title></title> <link rel="style ...

  7. @import与link方式的区别

    1. 老祖宗的差别.link属于XHTML标签,而@import完全是CSS提供的一种方式. link标签除了可以加载CSS外,还可以做很多其它的事情,比如定义RSS,定义rel连接属性等,@impo ...

  8. Python list列表的常用操作方法

    本文主要介绍了Python中列表(List)的详解操作方法,包含创建.访问.删除.排序.切片,乘等操作方法 1.创建列表:把逗号分隔的不同的数据项使用方括号括起来 list = [1,2,3,'Jam ...

  9. windows SDK创建一个窗体

    #include <windows.h> /* Declare Windows procedure */ LRESULT CALLBACK WindowProcedure (HWND, U ...

  10. 不能局部安装webpack的解决方法

    npm ERR! code ENOSELFnpm ERR! Refusing to install package with name "webpack" under a pack ...