Codeforces 713C Sonya and Problem Wihtout a Legend(DP)
题目链接 Sonya and Problem Wihtout a Legend
题意 给定一个长度为n的序列,你可以对每个元素进行$+1$或$-1$的操作,每次操作代价为$1$。
求把原序列变成严格递增子序列的所需最小花费。
考虑$DP$。
首先比较常见的套路就是把每个$a[i]$减去$i$,然后把这个新的序列升序排序,记为$b[i]$。
这里有个结论:最后操作完成之后的每个数都是$b[i]$中的某个数。
然后就可以$DP$了,令$f[i][j]$为前$i$个数操作之后每个数都小于等于$b[j]$的最小花费。
则有\begin{equation*}f[i][1] = \sum_{i=1}^nabs(a[i] - b[1])\end{equation*}
$f[i][j] = min(f[i][j - 1], f[i - 1][j] + abs(a[i] - b[j]))$
时间复杂度$O(nlogn + n^{2})$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 3010; int n;
LL a[N], b[N], f[N][N];
LL ret, ans; int main(){ scanf("%d", &n);
rep(i, 1, n) scanf("%lld", a + i), a[i] -= i, b[i] = a[i];
sort(b + 1, b + n + 1); rep(i, 0, n + 1) rep(j, 0, n + 1) f[i][j] = 1e18;
rep(i, 0, n + 1) f[0][i] = 0; rep(i, 1, n) f[i][1] = f[i - 1][1] + abs(a[i] - b[1]); rep(i, 1, n){
rep(j, 1, n){
f[i][j] = min(f[i][j - 1], f[i - 1][j] + abs(a[i] - b[j]));
}
} printf("%lld\n", f[n][n]);
return 0;
}
Codeforces 713C Sonya and Problem Wihtout a Legend(DP)的更多相关文章
- Codeforces C. Sonya and Problem Wihtout a Legend(DP)
Description Sonya was unable to think of a story for this problem, so here comes the formal descript ...
- codeforces C. Sonya and Problem Wihtout a Legend(dp or 思维)
题目链接:http://codeforces.com/contest/713/problem/C 题解:这题也算是挺经典的题目了,这里附上3种解法优化程度层层递进,还有这里a[i]-i<=a[i ...
- Codeforces 713C Sonya and Problem Wihtout a Legend(单调DP)
[题目链接] http://codeforces.com/problemset/problem/713/C [题目大意] 给出一个数列,请你经过调整使得其成为严格单调递增的数列,调整就是给某些位置加上 ...
- Codeforces713C Sonya and Problem Wihtout a Legend(DP)
题目 Source http://codeforces.com/problemset/problem/713/C Description Sonya was unable to think of a ...
- Codeforces 713C Sonya and Problem Wihtout a Legend DP
C. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...
- Codeforces 713C Sonya and Problem Wihtout a Legend
题意:给一个序列,可以进行若干次操作,每次操作选择一个数让它+1或-1,问最少要几次操作使得序列变为严格单调递增序列. 题解:首先考虑非严格递增序列,则每个数字最终变成的数字一定是该数组中的某个数.那 ...
- CodeForces 714E Sonya and Problem Wihtout a Legend(单调数列和DP的小研究)
题意:给你n个数字,每个数字可以加减任何数字,付出变化差值的代价,求最后整个序列是严格单调递增的最小的代价. 首先我们要将这个题目进行转化,因为严格单调下是无法用下面这个dp的方法的,因此我们转化成非 ...
- 【CF713C】Sonya and Problem Wihtout a Legend(离散化,DP)
题意:给你一个数列,对于每个数字你都可以++或者−− 然后花费就是你修改后和原数字的差值,然后问你修改成一个严格递增的,最小花费 思路:很久以前做过一道一模一样的 严格递增很难处理,就转化为非严格递增 ...
- codeforces 713C C. Sonya and Problem Wihtout a Legend(dp)
题目链接: C. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 ...
随机推荐
- Codeforces Round #271 (Div. 2)-B. Worms
http://codeforces.com/problemset/problem/474/B B. Worms time limit per test 1 second memory limit pe ...
- ios之UITextView
我们计划创建UITextView,实现UITextViewDelegate协议方法,使用NSLog检查该方法何时被调用.我们还会接触到如何在TextView中限制字符的数量,以及如何使用return键 ...
- mac系统快捷键大全详细介绍(全部)
对于使用苹果电脑的操作系统的新人来说,快捷键是个很麻烦的问题,要一个个的找到快捷键也不是很容易的问题,今天这篇文章就解决了到处找快捷键的麻烦. 第一种分类:启用快捷键 按下按键或组合键,直到所需的功能 ...
- PAT 乙级 1011
题目 题目地址:PAT 乙级 1011 思路 这道题的比较坑的地方在于给定数据的范围 int 类型的数据大小是[-2^31 , 2^31 -1] 即 [-2147483648,2147483647] ...
- 【REDIS】 redis-cli 命令
Redis提供了丰富的命令(command)对数据库和各种数据类型进行操作,这些command可以在Linux终端使用. 在编程时,比如使用Redis 的Java语言包,这些命令都有对应的方法.下面将 ...
- c++ 整数读入优化
这个函数!!!! 它真的巨好用!!! 改了两天 换了两个版本的代码 都TLE了 然后尝试着在文件头加了这个替换了cin和scanf 结果意外地发现两个文件都突然能过了??? 太神奇了叭! 强烈安利! ...
- 杭电 1503 Advanced Fruits
Description The company "21st Century Fruits" has specialized in creating new sorts of fru ...
- HTML、CSS知识点总结_D
一,html+css基础 1-1 Html和CSS的关系 学习web前端开发基础技术需要掌握:HTML.CSS.JavaScript语言.下面我们就来了解下这三门技术都是用来实现什么的: 1. HTM ...
- 关于hadoop学习的思考(一) —— 小的知识点的总结
一.对于CDH的小总结: CDH:是Cloudera公司在Apache开源项目hadoop的基础上发型的,共有五个版本前两个已不再更新,最经的两个分别是CDH4(基于hadoop2.0.0版本演化而来 ...
- 【Kubernetes】Deployment控制器模型
在Kubernetes中,Deployment是最基本的控制器对象 apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deploym ...