Codeforces 713C Sonya and Problem Wihtout a Legend(DP)
题目链接 Sonya and Problem Wihtout a Legend
题意 给定一个长度为n的序列,你可以对每个元素进行$+1$或$-1$的操作,每次操作代价为$1$。
求把原序列变成严格递增子序列的所需最小花费。
考虑$DP$。
首先比较常见的套路就是把每个$a[i]$减去$i$,然后把这个新的序列升序排序,记为$b[i]$。
这里有个结论:最后操作完成之后的每个数都是$b[i]$中的某个数。
然后就可以$DP$了,令$f[i][j]$为前$i$个数操作之后每个数都小于等于$b[j]$的最小花费。
则有\begin{equation*}f[i][1] = \sum_{i=1}^nabs(a[i] - b[1])\end{equation*}
$f[i][j] = min(f[i][j - 1], f[i - 1][j] + abs(a[i] - b[j]))$
时间复杂度$O(nlogn + n^{2})$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 3010; int n;
LL a[N], b[N], f[N][N];
LL ret, ans; int main(){ scanf("%d", &n);
rep(i, 1, n) scanf("%lld", a + i), a[i] -= i, b[i] = a[i];
sort(b + 1, b + n + 1); rep(i, 0, n + 1) rep(j, 0, n + 1) f[i][j] = 1e18;
rep(i, 0, n + 1) f[0][i] = 0; rep(i, 1, n) f[i][1] = f[i - 1][1] + abs(a[i] - b[1]); rep(i, 1, n){
rep(j, 1, n){
f[i][j] = min(f[i][j - 1], f[i - 1][j] + abs(a[i] - b[j]));
}
} printf("%lld\n", f[n][n]);
return 0;
}
Codeforces 713C Sonya and Problem Wihtout a Legend(DP)的更多相关文章
- Codeforces C. Sonya and Problem Wihtout a Legend(DP)
Description Sonya was unable to think of a story for this problem, so here comes the formal descript ...
- codeforces C. Sonya and Problem Wihtout a Legend(dp or 思维)
题目链接:http://codeforces.com/contest/713/problem/C 题解:这题也算是挺经典的题目了,这里附上3种解法优化程度层层递进,还有这里a[i]-i<=a[i ...
- Codeforces 713C Sonya and Problem Wihtout a Legend(单调DP)
[题目链接] http://codeforces.com/problemset/problem/713/C [题目大意] 给出一个数列,请你经过调整使得其成为严格单调递增的数列,调整就是给某些位置加上 ...
- Codeforces713C Sonya and Problem Wihtout a Legend(DP)
题目 Source http://codeforces.com/problemset/problem/713/C Description Sonya was unable to think of a ...
- Codeforces 713C Sonya and Problem Wihtout a Legend DP
C. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...
- Codeforces 713C Sonya and Problem Wihtout a Legend
题意:给一个序列,可以进行若干次操作,每次操作选择一个数让它+1或-1,问最少要几次操作使得序列变为严格单调递增序列. 题解:首先考虑非严格递增序列,则每个数字最终变成的数字一定是该数组中的某个数.那 ...
- CodeForces 714E Sonya and Problem Wihtout a Legend(单调数列和DP的小研究)
题意:给你n个数字,每个数字可以加减任何数字,付出变化差值的代价,求最后整个序列是严格单调递增的最小的代价. 首先我们要将这个题目进行转化,因为严格单调下是无法用下面这个dp的方法的,因此我们转化成非 ...
- 【CF713C】Sonya and Problem Wihtout a Legend(离散化,DP)
题意:给你一个数列,对于每个数字你都可以++或者−− 然后花费就是你修改后和原数字的差值,然后问你修改成一个严格递增的,最小花费 思路:很久以前做过一道一模一样的 严格递增很难处理,就转化为非严格递增 ...
- codeforces 713C C. Sonya and Problem Wihtout a Legend(dp)
题目链接: C. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 ...
随机推荐
- 在64位的linux中运行32位的应用程序
常规做法,先添加32bit架构: sudo dpkg --add-architecture i386 sudo apt-get update sudo apt-get install libc6:i3 ...
- 组合的输出(DFS)
题目描述: 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r<=n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你用递归的方法输出 ...
- 使用Fiddler抓取Android模拟器中的Android_APP请求
对Fiddler的设置:在https://www.telerik.com/download/fiddler网站上下载Fiddler,输入内容后点击下面按钮进行下载: 下载成功后,打开Fiddler进行 ...
- webpack-dev-server proxy代理
一个最简单的代理例子:index.html中有如下代码 fetch('/api/pub/article/list?pageSize=2').then((data)=>{ return data. ...
- python列表的增删改查用法
列表,元组 查 索引(下标) ,都是从0开始 切片 .count 查某个元素的出现次数 .index 根据内容找其对应的位置 "haidilao ge" in a 增加 a.app ...
- LeetCode(99) Recover Binary Search Tree
题目 Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without chang ...
- Verilog学习笔记基本语法篇(四)·········块语句
块语句是指将两条或者两条以上的语句组合在一起,使其在格式上更像一条语句.块语句分为两种: 1)用begin_end语句,通常用来标识顺序执行的语句,用它标识的块称作顺序块: 2)用fork_join语 ...
- 打印 Python 的一切 —— pprint & beeprint
打印,是所有程序员从小白时期就具备的神技,遇事不决打印一下,是 DEBUG 最简单且不依赖 IDE 的方式,自定义各种日志输出,也是项目成型后必备功能.但是为了优雅的打印格式,往往需要对各种对象进行特 ...
- 算法学习记录-图——应用之拓扑排序(Topological Sort)
这一篇写有向无环图及其它的应用: 清楚概念: 有向无环图(DAG):一个无环的有向图.通俗的讲就是从一个点沿着有向边出发,无论怎么遍历都不会回到出发点上. 有向无环图是描述一项工程或者系统的进行过程的 ...
- jdbc 和 hibernate 比较
相同点:都是数据库操作的中间件,都不是线程安全需要即时关闭,都可以对数据库操作进行显式处理. 不同:jdbc使用标准sql语言,hibernate使用HQL,操作对象jdbc直接操作数据传送到数据库, ...