Lucas 定理(证明)

A、B是非负整数,p是质数。AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。

则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  mod p 相同

即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)

证明:

首先我们注意到 n=(ak...a2,a1,a0)p  =  (ak...a2,a1)p * p + a0

=  [n/p]*p+a0

且m=[m/p]+b0

只要我们更够证明 C(n,m)=C([n/p],[m/p]) * C(a0,b0)  (mod p)

剩下的工作由归纳法即可完成

我们知道对任意质数p:   (1+x)^p  == 1+(x^p)  (mod p)

注意!这里一定要是质数。

(为什么要是质数呢?

因为(1+x)^p=1^p+c(p,1)x+c(p,2)x^2+...+x^p

但p为质数时c(p,1),c(p,2),...,c(p,p-1) 模p都为0

所以(1+x)^p == 1+x^p  (mod p)

对 模p 而言,接下来是让我惊叹的一个构造证明,证明只有一个公式如下:

  上式左右两边的x^m的系数对模p而言一定同余(为什么),其中左边的x^m的系数是 C(n,m) 而由于a0和b0都小于p

右边的x^m ( = x^(([m/p]*p)+b0)) 一定是由 x^([m/p]*p) 和 x^b0 相乘而得 (即发生于 i=[m/p] , j=b0 时) 因此我们就有了

C(n,m)=C([n/p],[m/p]) * C(a0,b0)  (mod p)

perfect!

lucas定理证明的更多相关文章

  1. lucas定理 +证明 学习笔记

    lucas定理 p为素数 \[\dbinom n m\equiv\dbinom {n\%p} {m\%p} \dbinom {n/p}{m/p}(mod p)\] 左边一项直接求,右边可递归处理,不包 ...

  2. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

  3. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  4. xdoj-1057(Lucas定理的证明及其模板)

    Lucas定理的证明: 转自百度百科(感觉写的还不错) 首先你需要这个算式:    ,其中f > 0&& f < p,然后 (1 + x) nΞ(1 + x) sp+q Ξ ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. Lucas定理学习小记

    (1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...

  7. hdu3037 Lucas定理

    Lucas定理 Lucas(n,m,p)=c(n%p,m%p)* Lucas(n/p,m/p,p),其中lucas(n,m,p)=C(n,m)%p (这里的除号是整除) 证明——百度百科 题意:求n个 ...

  8. Lucas定理的理解与应用

    Lucas定理:用于计算组合数模除素数后的值,其实就是把(n,m)分别表示为p进制,累乘各位的可能取的个数,得到最终的结果: 推论:(n & m) == m则C(n,m)为奇数:即C(n,m) ...

  9. Lucas定理及其应用

    Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元 ...

随机推荐

  1. Linux文件压缩与解压命令

    1  .zip 格式压缩与解压 压缩命令 zip 压缩文件名 源文件 zip  -r   压缩目录名       源目录 解压命令 unzip 文件名 td@td-Lenovo-IdeaPad-Y41 ...

  2. C#字符串操作大全

    ===============================字符串基本操作================================ 一.C#中字符串的建立过程 例如定义变量 strT=&qu ...

  3. jstl的错误总结与解决方法

    哎,真他娘的无语了,jstl标签竟然还与tomcat的版本有关.一会报错:java.lang.AbstractMethodError: javax.servlet.jsp.PageContext.ge ...

  4. Tomcat7.0源代码分析——启动与停止服务原理

    前言 熟悉Tomcat的project师们.肯定都知道Tomcat是怎样启动与停止的. 对于startup.sh.startup.bat.shutdown.sh.shutdown.bat等脚本或者批处 ...

  5. reduceByKey和groupByKey的区别

    先来看一下在PairRDDFunctions.scala文件中reduceByKey和groupByKey的源码 /** * Merge the values for each key using a ...

  6. [Angular] Debug Angular apps in production without revealing source maps

    Source: https://blog.angularindepth.com/debug-angular-apps-in-production-without-revealing-source-ma ...

  7. 【HTML 元素】嵌入另一张HTML文档、通过插件嵌入内容、嵌入数字表现形式

    1.嵌入另一张HTML文档 iframe 元素允许在现有的HTML文档中嵌入另一张文档.下面代码展示了iframe元素的用法: <!DOCTYPE html> <html lang= ...

  8. 单一按钮显示/隐藏&&提示框效果

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. javascript - 活动倒计时(天、时、分、秒)

    计数时: 结束时: 示例: <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  10. SecureCRT如何调整好看的黄色

    1.常规 →默认会话→编辑默认编辑→白黑 字体为console 2.全局选项 ANSI颜色有一个 把黄色 拖过去即可