【题目链接】 http://poj.org/problem?id=2135

【题目大意】

  有一张无向图,求从1到n然后又回来的最短路
  同一条路只能走一次

【题解】

  题目等价于求从1到n的两条路,使得两条路的总长最短
  那么就等价于求总流量为2的费用流

【代码】

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <utility>
using namespace std;
const int INF=0x3f3f3f3f;
typedef pair<int,int> P;
struct edge{int to,cap,cost,rev;};
const int MAX_V=1000;
int V,h[MAX_V],dist[MAX_V],prevv[MAX_V],preve[MAX_V];
vector<edge> G[MAX_V];
void add_edge(int from,int to,int cap,int cost){
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,0,-cost,G[from].size()-1});
}
int min_cost_flow(int s,int t,int f){
int res=0;
fill(h,h+V,0);
while(f>0){
priority_queue<P,vector<P>,greater<P> > que;
fill(dist,dist+V,INF);
dist[s]=0;
que.push(P(0,s));
while(!que.empty()){
P p=que.top(); que.pop();
int v=p.second;
if(dist[v]<p.first)continue;
for(int i=0;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){
dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];
prevv[e.to]=v;
preve[e.to]=i;
que.push(P(dist[e.to],e.to));
}
}
}
if(dist[t]==INF)return -1;
for(int v=0;v<V;v++)h[v]+=dist[v];
int d=f;
for(int v=t;v!=s;v=prevv[v]){
d=min(d,G[prevv[v]][preve[v]].cap);
}f-=d;
res+=d*h[t];
for(int v=t;v!=s;v=prevv[v]){
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}return res;
}
const int MAX_M=10000;
int N,M;
int a[MAX_M],b[MAX_M],c[MAX_M];
void init(){
for(int i=0;i<M;i++)scanf("%d%d%d",&a[i],&b[i],&c[i]);
}
void solve(){
int s=0,t=N-1;
V=N;
for(int i=0;i<N;i++)G[i].clear();
for(int i=0;i<M;i++){
add_edge(a[i]-1,b[i]-1,1,c[i]);
add_edge(b[i]-1,a[i]-1,1,c[i]);
}
printf("%d\n",min_cost_flow(s,t,2));
}
int main(){
while(~scanf("%d%d",&N,&M)){
init();
solve();
}return 0;
}

POJ 2135 Farm Tour (费用流)的更多相关文章

  1. poj 2135 Farm Tour 费用流

    题目链接 给一个图, N个点, m条边, 每条边有权值, 从1走到n, 然后从n走到1, 一条路不能走两次,求最短路径. 如果(u, v)之间有边, 那么加边(u, v, 1, val), (v, u ...

  2. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  3. poj 2135 Farm Tour 【无向图最小费用最大流】

    题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...

  4. 网络流(最小费用最大流):POJ 2135 Farm Tour

    Farm Tour Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...

  5. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  6. POJ 2135 Farm Tour [最小费用最大流]

    题意: 有n个点和m条边,让你从1出发到n再从n回到1,不要求所有点都要经过,但是每条边只能走一次.边是无向边. 问最短的行走距离多少. 一开始看这题还没搞费用流,后来搞了搞再回来看,想了想建图不是很 ...

  7. POJ 2135 Farm Tour &amp;&amp; HDU 2686 Matrix &amp;&amp; HDU 3376 Matrix Again 费用流求来回最短路

    累了就要写题解,近期总是被虐到没脾气. 来回最短路问题貌似也能够用DP来搞.只是拿费用流还是非常方便的. 能够转化成求满流为2 的最小花费.一般做法为拆点,对于 i 拆为2*i 和 2*i+1.然后连 ...

  8. poj 2135 Farm Tour【 最小费用最大流 】

    第一道费用流的题目--- 其实---还是不是很懂,只知道沿着最短路找增广路 建图 源点到1连一条容量为2(因为要来回),费用为0的边 n到汇点连一条容量为2,费用为0的边 另外的就是题目中输入的了 另 ...

  9. POJ 2135 Farm Tour(最小费用最大流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

随机推荐

  1. 什么是EM算法?

    开头借用李航老师书中总结,概率模型有时既含有观测变量,又含有隐藏变量或者潜在变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或者贝叶斯估计法估计模型参数,但是,当模型含有 ...

  2. 集训队日常训练20181124 DIV2

    急急忙忙要出去比赛就拉了一场有点sb的题目 5202: 网络寻路  时间限制(普通/Java):1000MS/3000MS     内存限制:65536KByte总提交: 15            ...

  3. Python下安装protobuf

    1. 下载安装包 2. 解压缩 tar –xzvf protobuf-2.6.1.tar.gz 3. 安装protoc 在python中使用protocbuf需要Protocal Buffer 编译器 ...

  4. bzoj2441 [中山市选2011]小W的问题(debug中)

    2441: [中山市选2011]小W的问题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 487  Solved: 186[Submit][Statu ...

  5. CF888E Maximum Subsequence (Meet in the middle,贪心)

    题目链接 Solution Meet in the middle. 考虑到 \(2^{35}\) 枚举会超时,于是分成两半枚举(尽量平均). 然后不能 \(n^2\) 去匹配,需要用到一点贪心: 将数 ...

  6. NetAPP常用操作

    ===CIFS share======================================================================================= ...

  7. vue中动态循环model

    vue动态循环model与angular有所不同,angular直接定义一个数组,然后传入循环列表的index即可. 而vue不仅需要定义一个数组,还需要通过接口读出循环的数组长度,然后在create ...

  8. Action中动态方法的调用 Action中通配符的使用 Result的配置

       Action中动态方法的调用 动态方法调用(Dynamic Method Invocation,DMI) 标识符:! 一.通过以下选中的文件来查看是否禁止调用动态方法

  9. jsp的九大内置对象及EL表达式的隐含对象

    九大内置对象: request         request对象具有请求域,即完成客户端的请求之前,该对象一直有效. response       response对象具有页面作用域,即访问一个页面 ...

  10. 行为型设计模式之状态模式(State)

    结构 意图 允许一个对象在其内部状态改变时改变它的行为.对象看起来似乎修改了它的类. 适用性 一个对象的行为取决于它的状态, 并且它必须在运行时刻根据状态改变它的行为. 一个操作中含有庞大的多分支的条 ...