【bzoj5047】空间传送装置 堆优化Dijkstra
题目描述
输入
输出
样例输入
3 2 1 3
1 1 5 1
2 2 7 1
1 2 1
2 3 2
3 1 1
样例输出
3
6
题解
堆优化Dijkstra
考虑到如果提前到一个点可以等待,因此先到一定不会比后到劣。所以Dijkstra的贪心策略是正确的。
观察每种边通过所需的时间:$(a_i*x+b_i)\mod c_i+d_i$。因此$x$在模$c_i$意义下只有$c_i$种取值。因此可以先预处理出第$i$种道路在模$c_i$等于$j$的时间下所花费的最小时间。通过求后缀最小值维护即可。(由于关系是一个环,因此可以断环倍增以减少代码量)
然后直接跑堆优化Dijkstra即可。
时间复杂度$O(cm+e\log n)$
#include <queue>
#include <cstdio>
#include <cstring>
#include <utility>
#define N 100010
using namespace std;
typedef pair<int , int> pr;
priority_queue<pr> q;
int a[51] , b[51] , c[51] , d[51] , f[51][4010] , head[N] , to[N << 1] , val[N << 1] , next[N << 1] , cnt , dis[N] , vis[N];
inline void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
int main()
{
int n , m , s , e , i , j , x , y , z;
scanf("%d%d%d%d" , &n , &m , &s , &e);
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d%d%d" , &a[i] , &b[i] , &c[i] , &d[i]);
for(j = 0 ; j < c[i] ; j ++ ) f[i][j] = f[i][j + c[i]] = (a[i] * j + b[i]) % c[i] + d[i];
for(j = 2 * c[i] - 2 ; ~j ; j -- ) f[i][j] = min(f[i][j] , f[i][j + 1] + 1);
}
for(i = 1 ; i <= e ; i ++ ) scanf("%d%d%d" , &x , &y , &z) , add(x , y , z);
memset(dis , 0x3f , sizeof(dis));
dis[1] = s , q.push(pr(-s , 1));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(dis[to[i]] > dis[x] + f[val[i]][dis[x] % c[val[i]]])
dis[to[i]] = dis[x] + f[val[i]][dis[x] % c[val[i]]] , q.push(pr(-dis[to[i]] , to[i]));
}
for(i = 2 ; i <= n ; i ++ )
{
if(dis[i] != 0x3f3f3f3f) printf("%d\n" , dis[i] - s);
else puts("-1");
}
return 0;
}
【bzoj5047】空间传送装置 堆优化Dijkstra的更多相关文章
- codevs1557 热浪(堆优化dijkstra)
1557 热浪 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 德克萨斯纯朴的民眾们这个夏 ...
- BZOJ 3040 最短路 (堆优化dijkstra)
这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...
- UVA - 11374 - Airport Express(堆优化Dijkstra)
Problem UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...
- BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra
题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...
- 配对堆优化Dijkstra算法小记
关于配对堆的一些小姿势: 1.配对堆是一颗多叉树. 2.包含优先队列的所有功能,可用于优化Dijkstra算法. 3.属于可并堆,因此对于集合合并维护最值的问题很实用. 4.速度快于一般的堆结构(左偏 ...
- POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]
题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...
- 【堆优化Dijkstra+字典序最短路方案】HDU1385-Minimum Transport Cost
[题目大意] 给出邻接矩阵以及到达各个点需要付出的代价(起点和终点没有代价),求出从给定起点到终点的最短路,并输出字典序最小的方案. [思路] 在堆优化Dijkstra中,用pre记录前驱.如果新方案 ...
- 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra
题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...
- 堆优化Dijkstra计算最短路+路径计数
今天考试的时候遇到了一道题需要路径计数,然而蒟蒻从来没有做过,所以在考场上真的一脸懵逼.然后出题人NaVi_Awson说明天考试还会卡SPFA,吓得我赶紧又来学一波堆优化的Dijkstra(之前只会S ...
随机推荐
- 【Java】重载(Overload)与重写(Override)
方法的语法 修饰符 返回值类型 方法名(参数类型 参数名){ ... 方法体 ... return 返回值; } 重载(overload) /** * 重载Overload: * 同一个类中,多个方法 ...
- 使用 W3C Performance 对象通过 R 和 JavaScript 将浏览器内的性能数据可视化[转]
当考虑 Web 性能指标时,需要关注的目标数字应该是从您自己的用户那里获得的实际用户指标.最常见的方法是利用 Splunk 之类的工具来分析您的机器数据,该工具支持您分析和可视化您的访问权限和错误日志 ...
- 给大家一个我的QQ群
很少关注博客了,提供一个QQ群讨论 我的一个QQ群:158351344
- json对象与字符串相互转换
JSON 语法 JSON 语法规则 在 JS 语言中,一切都是对象.因此,任何支持的类型都可以通过 JSON 来表示,例如字符串.数字.对象.数组等.但是对象和数组是比较特殊且常用的两种类型: 对象表 ...
- 小程序weapp的状态管理 Wenaox
Wenaox wechat state management 特点 支持中间件 中大型项目可多个 contro 区分模块 asyncs 自带 loading 轻量.性能好 安装 npm i -S we ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- Docker自学纪实(五) 使用Dockerfile构建php网站环境镜像
一般呢,docker构建镜像容器的方式有两种:一种是pull dockerhub仓库里面的镜像,一种是使用Dockerfile自定义构建镜像. 很多时候,公司要求的镜像并不一定符合dockerhub仓 ...
- Pythony的数据类型和变量使用方法详解
数据类型:计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据,不同的数据,需要定 ...
- Can't connect to local MySQL server through socket '/tmp/mysql.sock'
今天在连接mysql的时候出现了上面的错误, 很明显原因找不到/socket 文件 查了半天才发现原来是mysql没有开启 service mysqld start 开启之后在/tmp/目录下回自 ...
- linux-shell——01
没有什么好的标题,只是一些随笔.我用的是linux虚拟机,red hat 7 一:nat模式使得虚拟机可以访问外网,但是这种模式下只可以访问外网,但外面的不能访问里面 首先将虚拟机的网络连接改为nat ...