洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值
输入输出格式
输入格式:
输入文件的第一行包含两个整数 n和p,含义如上所述。
输出格式:
输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。
输入输出样例
说明
100%的数据中,1 ≤N ≤ 10^6, P≤ 10^9,p是一个质数。
题解
数位dp?这怕不是个树位dp……
我们把原序列看成一棵二叉树
那么就是要我们求大小为$n$的小根堆有多少个(就是父节点比左右儿子都小)
那么考虑dp,设$dp[i]$表示有多少个大小为$i$的小根堆,$val[i]$表示$i$的子树的大小
因为父亲必须小于儿子,所以根节点只能是最小的点,那么剩下的$i-1$个点里有$val[l]$个可以放在左子树,剩下的都可以放在右子树,方案数为$C_{i-1}^{val[l]}$
然后因为选不同的点之后还能有不同的方案,所以还要乘上方案数
所以最后的状态转移方程是这样的$dp[i]=C_{i-1}^{val[l]}*dp[val[l]]*dp[val[r]]$
然后因为要组合数取模,得用上Lucas定理
//minamoto
#include<cstdio>
#define ll long long
const int N=1e6+;
ll inv[N],fac[N],val[N],dp[N],n,mod;
#define min(a,b) ((a)<(b)?(a):(b))
ll qpow(ll x,ll y){
ll res=;
while(y){
if(y&) res=res*x%mod;
y>>=,x=x*x%mod;
}
return res;
}
void init(){
int k=min(n,mod-);
fac[]=fac[]=;
for(int i=;i<=k;++i) fac[i]=fac[i-]*i%mod; inv[k]=qpow(fac[k],mod-);
for(int i=k-;i;--i) inv[i]=(i+)*inv[i+]%mod;
}
ll C(ll n,ll m){
if(m>n) return ;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
ll Lucas(ll n,ll m){
if(m==||m==n) return ;
return Lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
int main(){
//freopen("testdata.in","r",stdin);
scanf("%lld%lld",&n,&mod);init();
for(int i=n;i;--i){
val[i]=;if((i<<)<=n) val[i]+=val[i<<];if((i<<|)<=n) val[i]+=val[i<<|];
if((i<<|)<=n) dp[i]=Lucas(val[i]-,val[i<<])*dp[i<<]%mod*dp[i<<|]%mod;
else if((i<<)<=n) dp[i]=dp[i<<];
else dp[i]=;
}
printf("%lld\n",dp[]);
return ;
}
洛谷P2606 [ZJOI2010]排列计数(数位dp)的更多相关文章
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- ●洛谷P2606 [ZJOI2010]排列计数
题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...
- 洛谷P2606 [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
随机推荐
- mina写入数据的过程
mina架构图 写数据.读数据触发点: 写数据: 1.写操作很简单,是调用session的write方法,进行写数据的,写数据的最终结果保存在一个缓存队列里面,等待发送,并把当前session放入f ...
- UML关系说明文档
http://blog.csdn.net/suxinpingtao51/article/details/8011335/
- docker 笔记(6)网络
docker network ls 默认docker安装时会创建3个网络 none网络 one 网络就是什么都没有的网络.挂在这个网络下的容器除了 lo,没有其他任何网卡.容器创建时,可以通过 - ...
- DAY18-Django之分页和中间件
分页 Django的分页器(paginator) view from django.shortcuts import render,HttpResponse # Create your views h ...
- MS_SQL_获取字符串最后出现的字符串及位置
一.如:'6.7.8.2.3.4.x'得到最后一个'.'后面的字符串: declare @str1 varchar(50) set @str1='6.7.8.2.3.4.x' select REV ...
- TCP UDP HTTP 的关系和区别
TCP UDP HTTP 三者的关系: TCP/IP是个协议组,可分为四个层次:网络接口层.网络层.传输层和应用层. 在网络层有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协议. 在传 ...
- 高并发压力测试工具Locust(蝗虫)
What is Locust? Locust is an easy-to-use, distributed, user load testing tool. It is intended for lo ...
- Opencv读取图片像素值并保存为txt文件
#include <opencv2/opencv.hpp>#include<vector>#include <fstream> using namespace st ...
- ubuntu下使用PIL中的show函数,无法显示图片的问题
问题描述:ubuntu14.04系统,python2.7(version),正在学习python中, from PIL import Image im = Image.open('1.jpg') im ...
- Luogu 2151 [SDOI2009]HH去散步
BZOJ 1875 矩阵乘法加速递推. 如果不要求不能走同一条边,那么直接构造出矩阵快速幂即可,但是不走相同的道路,怎么办? 发现边数$m$也很小,我们直接把$2 * m$开成一个矩阵,相当于记录上一 ...