一、定义:

  卡特兰数是一组满足下面递推关系的数列:

      

二、变形:

  首先,设h(n)为Catalan数的第n+1项,令h(0)=1,h(1)=1,Catalan数满足递推式:

    h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)

  可化简为1阶递推关系: h(n)=(4n-2)/(n+1)*h(n-1)  (n>=2)

   想看证明的点这里:https://blog.csdn.net/guoyangfan_/article/details/82888872

  通项公式: 1 、h(n)=C(2n,n)/(n+1)

        2、 h(n)=C(2n,n)-C(2n,n-1)

三、应用模型:

  1、定义型:

    求凸n边形的三角形划分方案数:

    

    求有N个节点的二叉树的形态个数:

       设f(n)表示有n个节点的二叉树的形态的个数,f(N)即为答案。

       首先必然有一个根节点。设根节点左边有k个节点,则右边有N-k-1个节点,此时f(N)=f(k)*f(N-k-1)。由于k可以取到0~N-1,

      由加法原理得f(N)=f(0)*f(N-1)+f(1)*f(N-2)+...+f(N-1)*f(0),符合卡特兰数的定义形式,故f(N)即为卡特兰数的hN项。

  2、通项公式型:

     出栈次序:
        一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的合法出栈序列?
          设一次进栈操作为‘0’,一次出栈操作为‘1’。
          首先发现每一个合法出栈序列有且对应唯一个合法的01串,这个01串长度为2n,含有n个‘0’和n个‘1’。考虑这个01串,发现它必须满足对每一位来说,从它开
       始往前数,0的个数要大于等于1的个数。在2n位上填入n个0的方案数为 。而从 中减去不符合要求的方案数即为所求答案。
          考虑不合法的方案:在从左往右扫时,必然会在某一个奇数位2p+1上首先出现p+1个1,和p个0。此后的 [2p+2,2n]上的2n−(2p+1)位有n−p个0, n−p−1个1。
       如若把后面这部分2n−(2p+1)位的1与0互换,使之成为n−p个1,n−p−1个0,结果得1个由n+1个1和n−1个0组成的2n位数,即一个不合法的方案必定对应着一个由n+1
          个1和n-1个0组成的一个排列。
           再反过来看,任意一个由n+1个1和n-1个0组成的一个排列,由于1的个数多了2个,且2n为偶数,所以必定在某个奇数位2p+1上出现1的个数超过0的个数。同
       样把后面部分1和0互换,成为了由n个0和n个1组成的2n位数。由此发现,每一个不合法的方案总是与唯一一个由n+1个1和n−1个0组成的排列一一对应。
           于是,不合法的方案数就可以写作:
           故答案=

    上题的各种变式:

      找零钱(找一半):有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?  

      球盒问题:球分两种颜色,黑色和白色分别各有n只,盒子数量和球的个数相同,每个盒子里面只能放一只球,并且必须满足如下限制,即每一个白球必须和一只黑球配对,有多少种情况?

      三角网格:
          
        形如这样的直角三角形网格,从左上角开始,只能向右走和向下走,只能走红色的方格,问总共有多少种走法?
      添加括号:矩阵连乘: ,共有(n+1)项,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?或者说:有n对括号,可以并列或嵌套排列,共有多少种情况?
     这些题的本质:“n个0和n个1组成一个2n位的2进制数,要求从左到右扫描时,1的累计数始终都小于等于0的累计数,求满足条件的数有多少?”
        画个表格整理一下:
      

        同列事件可视为等价,且在题目要求中事件1的次数/大小需要始终大于事件2。像这样的题都可以用卡特兰数的通项公式解。

      

 

   

      

浅谈 Catalan number——卡特兰数的更多相关文章

  1. Catalan Number 卡特兰数

    内容部分来自以下博客: Cyberspace_TechNode 邀月独斟 一个大叔 表示感谢! Catalan数的引入: 一个长度为2N的序列,里面有N个+1,N个-1 它的任意前缀和均非负,给定N, ...

  2. 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】

    题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...

  3. 卡特兰数 catalan number

    作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...

  4. HDU 1023 Traning Problem (2) 高精度卡特兰数

    Train Problem II Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Sub ...

  5. HDU 1023 Train Problem II (大数卡特兰数)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. nyoj164——卡特兰数(待填坑)

    题意:将1~2n个数按照顺时针排列好,用一条线将两个数字连接起来要求:线之间不能有交点,同一个点只允许被连一次. 最后问给出一个n,有多少种方式满足条件. 卡特兰数(列): 令h(0)=1,h(1)= ...

  7. bzoj2822[AHOI2012]树屋阶梯(卡特兰数)

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 879  Solved: 513[Submit][Status] ...

  8. 浅谈卡特兰数(Catalan number)的原理和相关应用

    一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...

  9. 卡特兰数(Catalan Number) 算法、数论 组合~

    Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...

随机推荐

  1. Selenium+PhantomJs 爬取网页内容

    利用Selenium和PhantomJs 可以模拟用户操作,爬取大多数的网站.下面以新浪财经为例,我们抓取新浪财经的新闻版块内容. 1.依赖的jar包.我的项目是普通的SSM单间的WEB工程.最后一个 ...

  2. Who will be punished

    Who will be punished Problem Description This time,suddenly,teacher Li wants to find out who have mi ...

  3. 洛谷 P1306 斐波那契公约数 题解

    题面 结论:gcd(F[n],F[m])=F[gcd(n,m)]; F[n]=a和F[n+1]=b F[n+2]=a+b,F[n+3]=a+2b,…F[m]=F[m?n?1]a+F[m?n]b F[n ...

  4. C++中的三种继承方式

    1,被忽略的细节: 1,冒号( :)表示继承关系,Parent 表示被继承的类,public 的意义是什么? class Parent { }; class Child : public Parent ...

  5. Linux的用户与用户组(权限管理)

    linux用户与用户.权限管理 用户管理: 1.useradd 创建用户 -c 指定用户描述 -d 指定家目录 默认家目录 /home下同名的目录 -g 指定主组 -G 指定附加组 [注意:一个用户主 ...

  6. 实现一个名为Person的类和它的子类Employee,Manager是Employee的子类,设计一个方法add用于涨工资,普通员工一次能涨10%,经理能涨20%。

    1.实现一个名为Person的类和它的子类Employee,Manager是Employee的子类,设计一个方法add用于涨工资,普通员工一次能涨10%,经理能涨20%.具体要求如下:(1)Perso ...

  7. CentOS 设置 yum源

    什么是 yum Yum(全称 Yellow Dog Updater)是一个在 Fedora 和 RedHat 以及 CentOS 中的 Shell 前端软件包管理器.基于 RPM 包管理,能够从指定的 ...

  8. 帝国cms 项目搬家换域名修改详情页图片路径

    update phome_ecms_news_data_1 set newstext=REPLACE (newstext,'/d/file/','http://www.xxxx.com/d/file/ ...

  9. Delphi 对象观察器

  10. 爬虫获取网页数据,报错:UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start by

    https://blog.csdn.net/hj_xy_0705/article/details/85011072