一、定义:

  卡特兰数是一组满足下面递推关系的数列:

      

二、变形:

  首先,设h(n)为Catalan数的第n+1项,令h(0)=1,h(1)=1,Catalan数满足递推式:

    h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)

  可化简为1阶递推关系: h(n)=(4n-2)/(n+1)*h(n-1)  (n>=2)

   想看证明的点这里:https://blog.csdn.net/guoyangfan_/article/details/82888872

  通项公式: 1 、h(n)=C(2n,n)/(n+1)

        2、 h(n)=C(2n,n)-C(2n,n-1)

三、应用模型:

  1、定义型:

    求凸n边形的三角形划分方案数:

    

    求有N个节点的二叉树的形态个数:

       设f(n)表示有n个节点的二叉树的形态的个数,f(N)即为答案。

       首先必然有一个根节点。设根节点左边有k个节点,则右边有N-k-1个节点,此时f(N)=f(k)*f(N-k-1)。由于k可以取到0~N-1,

      由加法原理得f(N)=f(0)*f(N-1)+f(1)*f(N-2)+...+f(N-1)*f(0),符合卡特兰数的定义形式,故f(N)即为卡特兰数的hN项。

  2、通项公式型:

     出栈次序:
        一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的合法出栈序列?
          设一次进栈操作为‘0’,一次出栈操作为‘1’。
          首先发现每一个合法出栈序列有且对应唯一个合法的01串,这个01串长度为2n,含有n个‘0’和n个‘1’。考虑这个01串,发现它必须满足对每一位来说,从它开
       始往前数,0的个数要大于等于1的个数。在2n位上填入n个0的方案数为 。而从 中减去不符合要求的方案数即为所求答案。
          考虑不合法的方案:在从左往右扫时,必然会在某一个奇数位2p+1上首先出现p+1个1,和p个0。此后的 [2p+2,2n]上的2n−(2p+1)位有n−p个0, n−p−1个1。
       如若把后面这部分2n−(2p+1)位的1与0互换,使之成为n−p个1,n−p−1个0,结果得1个由n+1个1和n−1个0组成的2n位数,即一个不合法的方案必定对应着一个由n+1
          个1和n-1个0组成的一个排列。
           再反过来看,任意一个由n+1个1和n-1个0组成的一个排列,由于1的个数多了2个,且2n为偶数,所以必定在某个奇数位2p+1上出现1的个数超过0的个数。同
       样把后面部分1和0互换,成为了由n个0和n个1组成的2n位数。由此发现,每一个不合法的方案总是与唯一一个由n+1个1和n−1个0组成的排列一一对应。
           于是,不合法的方案数就可以写作:
           故答案=

    上题的各种变式:

      找零钱(找一半):有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?  

      球盒问题:球分两种颜色,黑色和白色分别各有n只,盒子数量和球的个数相同,每个盒子里面只能放一只球,并且必须满足如下限制,即每一个白球必须和一只黑球配对,有多少种情况?

      三角网格:
          
        形如这样的直角三角形网格,从左上角开始,只能向右走和向下走,只能走红色的方格,问总共有多少种走法?
      添加括号:矩阵连乘: ,共有(n+1)项,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?或者说:有n对括号,可以并列或嵌套排列,共有多少种情况?
     这些题的本质:“n个0和n个1组成一个2n位的2进制数,要求从左到右扫描时,1的累计数始终都小于等于0的累计数,求满足条件的数有多少?”
        画个表格整理一下:
      

        同列事件可视为等价,且在题目要求中事件1的次数/大小需要始终大于事件2。像这样的题都可以用卡特兰数的通项公式解。

      

 

   

      

浅谈 Catalan number——卡特兰数的更多相关文章

  1. Catalan Number 卡特兰数

    内容部分来自以下博客: Cyberspace_TechNode 邀月独斟 一个大叔 表示感谢! Catalan数的引入: 一个长度为2N的序列,里面有N个+1,N个-1 它的任意前缀和均非负,给定N, ...

  2. 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】

    题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...

  3. 卡特兰数 catalan number

    作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...

  4. HDU 1023 Traning Problem (2) 高精度卡特兰数

    Train Problem II Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Sub ...

  5. HDU 1023 Train Problem II (大数卡特兰数)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. nyoj164——卡特兰数(待填坑)

    题意:将1~2n个数按照顺时针排列好,用一条线将两个数字连接起来要求:线之间不能有交点,同一个点只允许被连一次. 最后问给出一个n,有多少种方式满足条件. 卡特兰数(列): 令h(0)=1,h(1)= ...

  7. bzoj2822[AHOI2012]树屋阶梯(卡特兰数)

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 879  Solved: 513[Submit][Status] ...

  8. 浅谈卡特兰数(Catalan number)的原理和相关应用

    一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...

  9. 卡特兰数(Catalan Number) 算法、数论 组合~

    Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...

随机推荐

  1. Linux用ICMP协议实现简单Ping网络监测功能

    ICMP是(Internet Control Message Protocol)Internet控制报文协议.它是TCP/IP协议族的一个子协议,用于在IP主机.路由器之间传递控制消息.控制消息是指网 ...

  2. etcd数据单机部署

    单机下载 版本信息请参考https://github.com/etcd-io/etcd/releases 本次以最新版本3.4.1为例https://github.com/etcd-io/etcd/r ...

  3. 委托、泛型委托、多播委托、匿名函数、lamda表达式、事件

    1.为什么要使用委托 将一个方法作为参数传递给另一个方法 2.委托概念 public delegate int 委托名(int a, int b); 声明一个委托类型,可以用访问修饰符修饰,deleg ...

  4. 洛谷 P5150 生日礼物 题解

    题面 因为 n=lcm(a,b)n = lcm(a, b)n=lcm(a,b) ,可以得出: a  和 b  的质因数都是 n 的质因数 对于 n  的每个质因数 x ,在 n 中的次数为 y ,那么 ...

  5. springboot2.0处理自定义异常始终返回json

    1. 编写自定义异常类 package cn.jfjb.crud.exception; /** * @author john * @date 2019/11/24 - 9:48 */ public c ...

  6. vim中代码按照行对齐。

    在vim下, 用命令v, 然后移动光标,选种你的文本, 然后按下=键, 看看效果如何吧.

  7. Quartz的job中注入的services接口为空的解决办法

    自己重新定义一个类继承AdaptableJobFactory类 public class JobFactory extends AdaptableJobFactory { @Autowired pri ...

  8. C++ 调用C语言、extern "C"、__cplusplus关键字

    ——C++编译器完全兼容C语言的编译方式.(但是得有源代码) ——C++编译器会优先使用C++的编译方式进行编译 ——extern "C" 关键字能够强制C++编译器进行C方式的编 ...

  9. 083、Prometheus架构(2019-05-05 周日)

    参考https://www.cnblogs.com/CloudMan6/p/7692765.html   Prometheus 是一个非常优秀的监控工具,准确的说,应该是监控方案.Prometheus ...

  10. composer之predis

    安装:   composer require predis/predis   即可 predis是PHP连接Redis的操作库,由于它完全使用php编写,大量使用命名空间以及闭包等功能,只支持php5 ...