[luogu]P1800

software_NOI导刊2010提高(06)

题目描述

一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每个软件划分成m个模块,由公司里的技术人员分工完成,每个技术人员完成同一软件的不同模块的所用的天数是相同的,并且是已知的,但完成不同软件的一个模块的时间是不同的,每个技术人员在同一时刻只能做一个模块,一个模块只能由一个人独立完成而不能由多人协同完成。一个技术人员在整个开发期内完成一个模块以后可以接着做任一软件的任一模块。写一个程序,求出公司最早能在什么时候交付软件。

输入输出格式

输入格式:

输入文件第一行包含两个由空格隔开的整数n和m,其中1<=n<=100,1<=m<=100,接下来的n行每行包含两个用空格隔开的整数d1和d2,d1表示该技术人员完成第一个软件中的一个模块所需的天数,d2表示该技术人员完成第二个软件中的一个模块所需的天数,其中1<= d1,d2<=100。

输出格式:

输出文件仅有一行包含一个整数d,表示公司最早能于d天后交付软件。

输入输出样例

输入样例1#:

3 20
1 1
2 4
1 6

输出样例1#:

18

说明

【样例】

最快的方案是第一个技术人员完成第二个软件的18个模块,用时18天,第三个技术人员完成第一个软件的18个模块,用时18天,其余的模块由第二个技术人员完成,用时12天,做完所有模块需要18天。如果第一个技术人员完成第二个软件的17个模块,第三个技术人员完成第一个软件的17个模块,其余的模块由第二个技术人员完成,需要用时18天,做完所有模块仍然需要18天,所以少于18天不可能做完所有模块。


一道神奇的题目,容易想到答案是单调的,考虑二分答案。

但是检验...一开始要贪心的,想想完全不行啊啊啊!!!

可恶,偷看一下神犇的题解,真的牛!

每个人其实相互独立,各干各的,最后求他们的最大值,最小化最大值。

所以我们只需要让n个人第一个做满,最大化第二个,如果>=m,则可以。

所以我们用f[i][j]表示前i个人第一个软件做了j个,可以最多做的第二个软件。

转移:
f[i][j]=Max{f[i-1][j-k]+(mid-d1[i]*k)/d2[i]} 【如果第i个选择了k个,只剩下(mid-d1[i])/d2[i]个可以做(将每个决策独立出来,好方法,NB。)】

还有就是可恶的边界,不存在的状态要初始化一个很小的数。f[0][0]=0;

代码:

 #include<iostream>
 #include<cstdio>
 #include<cstring>
 using namespace std;
 inline int read();
 int Max(int x,int y){return x>y?x:y;}
 int Min(int x,int y){return x<y?x:y;}
 namespace lys{
      ;
     int dp[N][N],d1[N],d2[N];
     int n,m;
     bool chk(int mid){
         int i,j,k;
         memset(dp,-,sizeof dp);
         dp[][]=;
         ;i<=n;i++)
             ;j<=m;j++)
                 ;k<=Min(j,mid/d1[i]);k++) dp[i][j]=Max(dp[i][j],dp[i-][j-k]+(mid-d1[i]*k)/d2[i]);
         return (dp[n][m]>=m);
     }
     int main(){
         int i;
         n=read(); m=read();
         ;i<=n;i++) d1[i]=read(),d2[i]=read();
         ,r=,mid;
         while(l<r){
             mid=(l+r)>>;
             if(chk(mid)) r=mid;
             ;
         }
         printf("%d\n",l);
         ;
     }
 }
 int main(){
     lys::main();
     ;
 }
 inline int read(){
     ,ff=;
     char c=getchar();
     '){
         ;
         c=getchar();
     }
     +c-',c=getchar();
     return kk*ff;
 }

[luogu]P1800 software_NOI导刊2010提高(06)[DP][二分答案]的更多相关文章

  1. P1800 software_NOI导刊2010提高(06)

    P1800 software_NOI导刊2010提高(06) 题目描述 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每个软件划分成m个模块,由公司里的技术 ...

  2. P1800 software_NOI导刊2010提高(06)(二分答案)

    P1800 software_NOI导刊2010提高(06) 题目描述 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每个软件划分成m个模块,由公司里的技术 ...

  3. 洛谷P1800 software_NOI导刊2010提高(06)

    P1800 software_NOI导刊2010提高(06) 题目描述 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每个软件划分成m个模块,由公司里的技术 ...

  4. 洛谷 P1800 software_NOI导刊2010提高(06)(二分答案+DP检验)

    P1800 software_NOI导刊2010提高(06) 标签 二分答案 难度 普及/提高- 题目描述 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每 ...

  5. 洛谷 P1800 software_NOI导刊2010提高(06)

    题目链接 题解 二分答案+dp 如果我们知道答案,贪心地想,让每个人做尽量多的模块一定不会比最优解差 \(f[i][j]\)表示前\(i\)个人第一个模块做了\(j\)块,第二个模块最多能做多少 然后 ...

  6. Luogu P1801 黑匣子_NOI导刊2010提高(06)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

  7. P1799 数列_NOI导刊2010提高(06)

    P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...

  8. P1801 黑匣子_NOI导刊2010提高(06)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

  9. 洛谷 P1801 黑匣子_NOI导刊2010提高(06)(未完)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

随机推荐

  1. Shell 变量详解教程之位置变量与预定义变量

    Shell 变量分为3部分,分别是用户自定义变量.位置变量和预定义变量. 一.   自定义变量 那么,什么是变量呢?简单的说,就是让某一个特定字符串代表不固定的内容,用户定义的变量是最普通的Shell ...

  2. Hive Error : Java heap space 解决方案

    Java heap space问题一般解决方案: 设置 set io.sort.mb=10; 排序所使用的内存数量,默认值是100M,和mapred.child.java.opts相对应,opts默认 ...

  3. Anaconda配置环境变量+创建虚拟环境+pycharm使用虚拟环境

    Anaconda配置环境变量+创建虚拟环境 配置环境变量 没有添加系统变量,所有系统根本识别不了conda命令,找不到位置,所以添加以下系统变量: 添加对应Anaconda环境变量:(以自己的安装路径 ...

  4. 洛谷 P1182 数列分段 题解

    题面 给大家普及一个知识,只要看到最大值最小或最小值最大等字样就往二分上想吧! 然后是正解部分:   我们可以二分答案:   对于每次二分的区间取中间值mid,并对其进行check()判断:   如果 ...

  5. adb 打印kernel输出的log

     一. linux 内核printk机制     1.1. Android内核是基于Linxu kernel的,因此其log机制也是通用的,在Android内核中使用printk函数进行Log输出.与 ...

  6. redis 哈希 数据类型

    哈希 hset  设置哈希表字段 hset 8000 ename tom   hset 8000 job salesman hget 8000 ename  "tom" hget  ...

  7. Python 入门之 内置模块 -- hashlib模块

    Python 入门之 内置模块 -- hashlib模块 1.hashlib 摘要算法,加密算法 (1)主要用途: <1> 加密 : md5 sha1 sha256 sha512 md5, ...

  8. dict 小习题

    1.请将列表中的每个元素通过 "" 链接起来. users = ['大黑哥','龚明阳',666,'渣渣辉'] a='' for i in users: i=str(i) a=a+ ...

  9. 51nod 2589 快速讨伐

    51nod 如果不考虑升级操作,只有买装备操作和打怪操作,那么首先一定要先买装备,然后可以打死1级的怪,这些怪被打死的时间只要在第一次买装备后面好了,因为现在总操作是\(n+\sum a_i\)个,所 ...

  10. 需求文档(PRD文档)

    https://blog.csdn.net/zhangbijun1230/article/details/79451874