bzoj链接

Time limit 10000 ms
Memory limit 262144 kB
OS Linux

感想

树上动态gcd的第二题也好了。

解题思路

由上一题 [JSOI2009]瓶子和燃料 可知,这题这样子折腾就是在求区间最大公因数,这里还带上了区间加,所以需要另外一些性质——

参考了这篇博客

众所周知,区间加作用到原序列上,相当于差分序列的两次单点修改(操作范围的右边顶着边界,那就是1次单点修改)。由更相减损可知,原序列总的gcd等于差分序列总的gcd,即差分一下gcd不变(此时求gcd的函数要注意将小于零的参数换成其绝对值进行计算,因为更相减损是大的减小的)。

\[\gcd\left(a_{1}, a_{2}, a_{3}, \dots, a_{n-2}, a_{n-1}, a_{n}\right)
\]

\[=\gcd \left(a_{1}, a_{2}-a_{1}, a_{3}-a_{2}, \ldots a_{n-1}-a_{n-2}, a_{n}-a_{n-1}\right)
\]

设\(a_0=0\),\(d_i=a_i-a_{i-1}\)(差分数组),于是把上式推广到其他区间——

\[\gcd\left(a_{l}, a_{l+1}, a_{l+2}, \dots, a_{r-2}, a_{r-1}, a_{r}\right)
\]

\[=\gcd\left( a_{l} , \gcd (d_{l+1}, d_{l+2}, \ldots, d_{r})\right)
\]

\[=\gcd\left(\sum_{i=1}^{l} d_{l} , \gcd \left(d_{l+1}, d_{l+2}, \ldots, d_{r}\right)\right)
\]

又因为gcd满足区间加法,于是,我们就可以用线段树维护差分序列的区间和、gcd。

顺便,Hint里出现的那个\(L>R\)意思应该不是说数据有锅,而是说,当查询的区间长度为1时,要注意特判。

观察上式——$$\gcd\left(\sum_{i=1}^{l} d_{l} , \gcd \left(d_{l+1}, d_{l+2}, \ldots, d_{r}\right)\right)$$

对于这一项$$\gcd \left(d_{l+1}, d_{l+2}, \ldots, d_{r}\right)$$

当\(l=r\),即查询区间长度为1时,会出现\(l+1>r\)的情况,此时这一项应该直接返回0,以防止干扰结果。或者在其他地方特判一下也行。

源代码

#include<stdio.h>

const int MAXN=1e5+5;
long long gcd(long long x,long long y)
{
if(x<0) x=-x;
if(y<0) y=-y;
return y==0?x:gcd(y,x%y);
}//更相减损是大的减小的
int n,m;
long long d[MAXN];//差分数组 struct Segtree{
long long g,sum;
}t[MAXN<<2];//维护差分数组的线段树
void pushup(int x)
{
t[x].g=gcd(t[x<<1].g,t[x<<1|1].g);
t[x].sum=t[x<<1].sum+t[x<<1|1].sum;
}
void build(int x,int l,int r)
{
if(l==r)
{
t[x].g=t[x].sum=d[l];
return;
}
int mid=l+r>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
pushup(x);
}
void update(int x,int l,int r,int pos,int k)//pos处增加k
{
if(l==r)
{
t[x].sum+=k;
t[x].g+=k;
return;
}
int mid=l+r>>1;
if(pos<=mid) update(x<<1,l,mid,pos,k);
else update(x<<1|1,mid+1,r,pos,k);
pushup(x);
}
long long quesum(int x,int l,int r,int ql,int qr)
{
if(ql<=l&&r<=qr)
return t[x].sum;
long long ans=0;
int mid=l+r>>1;
if(ql<=mid) ans+=quesum(x<<1,l,mid,ql,qr);
if(qr>mid) ans+=quesum(x<<1|1,mid+1,r,ql,qr);
return ans;
}
long long quegcd(int x,int l,int r,int ql,int qr)
{
if(ql>qr) return 0;//特判这个
if(ql<=l&&r<=qr)
return t[x].g;
long long ans;
int mid=l+r>>1;
if(qr<=mid) ans=quegcd(x<<1,l,mid,ql,qr);
else if(ql>mid) ans=quegcd(x<<1|1,mid+1,r,ql,qr);
else ans=gcd(quegcd(x<<1,l,mid,ql,qr),quegcd(x<<1|1,mid+1,r,ql,qr));
return ans;
} inline long long opt1(int l,int r)//区间询问gcd
{
return gcd(quesum(1,1,n,1,l),quegcd(1,1,n,l+1,r));
}
void opt2(int l,int r,int k)//区间增加k
{
update(1,1,n,l,k);
if(r<n) update(1,1,n,r+1,-k);
}
int main()
{
//freopen("test.in","r",stdin);
scanf("%d%d",&n,&m);
d[0]=0;
for(int i=1;i<=n;i++)
scanf("%lld",d+i);
for(int i=n;i>1;i--)
d[i]-=d[i-1];
build(1,1,n);
while(m--)
{
int opt,l,r,k;
scanf("%d%d%d",&opt,&l,&r);
if(opt==1)
{
printf("%lld\n",opt1(l,r));
}
else
{
scanf("%d",&k);
opt2(l,r,k);
}
}
return 0;
}

BZOJ 5028 小z的加油站的更多相关文章

  1. bzoj 5028: 小Z的加油店——带修改的区间gcd

    Description 小Z经营一家加油店.小Z加油的方式非常奇怪.他有一排瓶子,每个瓶子有一个容量vi.每次别人来加油,他会让 别人选连续一段的瓶子.他可以用这些瓶子装汽油,但他只有三种操作: 1. ...

  2. BZOJ 5028 小Z的加油店

    [题解] 本题要求求出区间内的各个元素通过加减之后能够得出的最小的数,那么根据裴蜀定理可知答案就是区间内各个元素的最大公约数. 那么本题题意化简成了维护一个序列,支持区间加上某个数以及查询区间元素的最 ...

  3. bzoj 4031: 小Z的房间 矩阵树定理

    bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...

  4. BZOJ 2038 小z的袜子 & 莫队算法(不就是个暴力么..)

    题意: 给一段序列,询问一个区间,求出区间中.....woc! 贴原题! 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过 ...

  5. bzoj 2308 小Z的袜子(莫队算法)

    小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...

  6. BZOJ 2038 小Z的袜子(hose) 莫队算法模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目大意: 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中 ...

  7. BZOJ 2038 小z的袜子(莫队)

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  8. bzoj 2038 小Z的袜子(hose)(莫队算法)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 11542  Solved: 5166[Sub ...

  9. (原创)BZOJ 2038 小Z的袜子(hose) 莫队入门题+分块

    I - 小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z ...

随机推荐

  1. Python pymysql对数据库的基础操作

    示例数据库名demo,表名info select * from info; 查看该表数据 +----+-------+--------+-----+---------------------+---- ...

  2. python 并发编程 多线程 定时器

    定时器 就是隔多长时间去触发任务执行 指定n秒后执行某操作 Timer如何使用,看Timer源码 class Timer(Thread): """Call a funct ...

  3. python 并发编程 多线程 死锁现象与递归锁

    一 死锁现象 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等 ...

  4. [转帖]什么是 LLVM?Swift, Rust, Clang 等语言背后的支持

    要了解用于以编程方式生成机器原生代码的编译器框架是如何让新语言的推出以及对现有的语言进行增强比以往更加容易了. https://www.oschina.net/translate/what-is-ll ...

  5. HDU 6175 算术

    题目大意 求 $\sum_{i = 1}^{n} \sum_{j = 1}^{m} \mu(\lcm(i, j))$ . $ 1 \le n, m \le 10^6 $ . 分析 不妨设 $ n \l ...

  6. numpy伪随机数的生成

    numpy伪随机数的生成 normal函数 可以用normal来得到一个标准正态分布的4×4样本数组 >>> import numpy as np >>> samp ...

  7. cannot convert from pointer to base class 'QObject' to pointer to derived class 'subClass' via virtual base 'baseClass'

    QT 编译不过的另一个问题: 1. 新建一个console工程 QT -= gui CONFIG += c++ console CONFIG -= app_bundle # The following ...

  8. ubuntu 安装 Anaconda2和3的tips

    Anaconda 2 3 安装tips 安装anaconda2 我们要下载Anaconda2-4.3.0-Linux-x86_64.sh安装文件 下载好之后,在文件路径下执行以下命令: bash An ...

  9. zookeeper 选举leader详解

    一.前言 前面学习了Zookeeper服务端的相关细节,其中对于集群启动而言,很重要的一部分就是Leader选举,接着就开始深入学习Leader选举. 二.Leader选举 2.1 Leader选举概 ...

  10. ReactNative: Android与iOS平台兼容处理

    方法一: 创建不同的文件扩展名:*.android.js*.io.js 方法二: import { Platform } from 'react-native'; if (Platform.OS == ...