TrickGCD

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2523    Accepted Submission(s): 965

Problem Description
You are given an array A , and Zhu wants to know there are how many different array B satisfy the following conditions?

* 1≤Bi≤Ai
* For each pair( l , r ) (1≤l≤r≤n) , gcd(bl,bl+1...br)≥2

 
Input
The first line is an integer T(1≤T≤10) describe the number of test cases.

Each test case begins with an integer number n describe the size of array A.

Then a line contains n numbers describe each element of A

You can assume that 1≤n,Ai≤1e5

 
Output
For the kth test case , first output "Case #k: " , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer mod 1e9+7
 
Sample Input
1
4
4 4 4 4
 
Sample Output
Case #1: 17
 
题目大意:有数组A,根据1<=Bi<=Ai,且对于任意1<=l<=r<=n, gcd(Bl,Bl+1...Br)≥2 构造B数列
思路:B的最小值一定不会大于A的最小值,所以gcd(B1,B2,...,Bn)一定不大于A的最小值,那么我们可以求出A的最小值,对gcd为质数的情况求和,利用容斥原理减去重复的情况。在计算重复情况时,发现对于gcd是奇数个质数的乘积时是加,偶数个时是减,与莫比乌斯函数相反,那么就可以借助莫比乌斯函数求和。这里暴力求和会超时,问了学长之后才知道分桶计算可以快很多,涨姿势了。
 
AC代码:
 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
const int MAXN=1e5+;
const int MOD=1e9+;
LL miu[MAXN],primes[MAXN],tot=;
bool isprime[MAXN];
int a[MAXN],sum[MAXN];
int maxx=,minn=MAXN;
void getmiu()
{
memset(isprime, , sizeof((isprime)));
miu[]=;
for(int i=;i<MAXN;i++){
if(isprime[i]==false)
{
miu[i]=-;
primes[++tot]=i;//cout<<'*'<<endl;
}
for(int j=;j<=tot;j++){
if(i*primes[j]>=MAXN) break;
isprime[i*primes[j]]=;
if(i%primes[j]==){
miu[i*primes[j]]=;
break;
}
miu[i*primes[j]]=-miu[i];
}
} for(int i=;i<MAXN;i++) miu[i]=-miu[i];
}
LL quick_pow(LL a, LL p)
{
int res=;
while(p)
{
if(p&) res=a*res%MOD;
a=a*a%MOD;
p>>=;
}
return res;
}
int solve()
{
LL i,j,k,p;
LL ans=;
for(int i=;i<=minn;i++){
if(!miu[i]) continue;
LL res=;
j=min(i, maxx), k=min((i<<)-, maxx);
for(p=; ;p++)
{
if(sum[k]-sum[j-])
res=res*quick_pow(p, sum[k]-sum[j-])%MOD;
if(k==maxx) break;
j+=i;
k+=i;
if(k>maxx) k=maxx;
}
ans+=miu[i]*res;
if(ans>MOD) ans-=MOD;
if(ans<) ans+=MOD;
}
return ans%MOD; }
int main()
{
int T,n,t=;
getmiu();
scanf("%d", &T);
//cout<<'*'<<endl;
while(T--)
{
scanf("%d", &n);
maxx=,minn=MAXN;
memset(sum, , sizeof(sum));
for(int i=;i<n;i++){
scanf("%d", &a[i]);
sum[a[i]]++;
maxx=max(a[i], maxx);
minn=min(a[i], minn);
}
for(int i=;i<=maxx;i++) sum[i]+=sum[i-];
LL res=solve();
printf("Case #%d: %lld\n", ++t, res);
}
}

HDU 6053 TrickGCD —— 2017 Multi-University Training 2的更多相关文章

  1. HDU 6053 - TrickGCD | 2017 Multi-University Training Contest 2

    /* HDU 6053 - TrickGCD [ 莫比乌斯函数,筛法分块 ] | 2017 Multi-University Training Contest 2 题意: 给出数列 A[N],问满足: ...

  2. hdu 6053: TrickGCD (2017 多校第二场 1009) 【莫比乌斯 容斥原理】

    题目链接 定义f[n]表示n是最大公约数情况下的计数,F[n]为n是公约数情况下的计数 (可以和 http://www.cnblogs.com/Just--Do--It/p/7197788.html  ...

  3. 2017 多校2 hdu 6053 TrickGCD

    2017 多校2 hdu 6053 TrickGCD 题目: You are given an array \(A\) , and Zhu wants to know there are how ma ...

  4. HDU 6168 - Numbers | 2017 ZJUT Multi-University Training 9

    /* HDU 6168 - Numbers [ 思维 ] | 2017 ZJUT Multi-University Training 9 题意: .... 分析: 全放入multiset 从小到大,慢 ...

  5. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  6. 2017 Multi-University Training Contest - Team 2 &&hdu 6053 TrickGCD

    TrickGCD Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  7. hdu 6053 TrickGCD 筛法

    TrickGCD Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Probl ...

  8. hdu 6053 TrickGCD(筛法+容斥)

    TrickGCD Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  9. HDU 6053 ( TrickGCD ) 分块+容斥

    TrickGCD Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

随机推荐

  1. Mac定制终端:iTerm2 + zsh + powerline

    原始界面:   配置后的界面:   安装iTerm2 可以直接去官网下载:https://www.iterm2.com/ 下载后直接安装即可 安装主题 所有主题:https://iterm2color ...

  2. spring4.1.8扩展实战之四:感知spring容器变化(SmartLifecycle接口)

    本章是<spring4.1.8扩展实战>的第四篇,如果业务上需要在spring容器启动和关闭的时候做一些操作,可以自定义SmartLifecycle接口的实现类来扩展,本章我们通过先分析再 ...

  3. WEB服务端安全---认证会话与访问控制

    一.认证与会话管理 认证:简而言之就是通过一定的凭证认出用户是谁.认证过程中按凭证数量可简单分为 ‘单因素认证’.‘双因素认证’或多因素认证.一般来说,多因素认证强度更高,但是用户体验上会比单因素认证 ...

  4. 上海站赛后总结&反思

    上海站赛后总结&反思 赛后反思一下,本应该做出3~4题的场,最后只出了2题. 先回顾一下比赛,比赛开始10分钟,队友dy就想出了B题是trie树的模板题,然后让mqy码,第一次交的时候有地方打 ...

  5. Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界

    在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...

  6. DbWrench002--建模以及数据正向工程和反向工程的具体操作

    DbWrench--建模以及数据正向工程和反向工程 参考博客:https://my.oschina.net/u/3459265/blog/1611999 一.数据正向工程 在建模工作中画好的表与表之间 ...

  7. c#访问webapi以及获取

    提交post #region XML方式提交        public static void XML() {            HttpWebRequest wReq = (HttpWebRe ...

  8. [eclipse相关] 001 - 启动+运行优化

    本随笔参考了其他博客内容,且在验证有效之下才或誊抄或摘录或加上自己经验组合而成. 参考博客: 1,http://zwd596257180.gitee.io/blog/2019/04/17/eclips ...

  9. TypeError: reduction operation 'argmin' not allowed for this dtype

    解决方法:在idxmax()前加.astype(‘float64’) .argmin() .argmax() 计算最大.小值所在位置的索引(针对自动索引的)(适用于Series类型:) .idxmin ...

  10. Codeforces 1093C (思维+贪心)

    题面 传送门 题目大意: 有一个长n(n为偶数)的序列a 已知a满足 \(a_1≤a_2≤⋯≤a_n\) 给出一个长度为\(\frac{n}{2}\) 的序列b,定义\(b_i=a_i+a_{n-i+ ...