Codeforces Round #285 (Div. 2)C. Misha and Forest(拓扑排序)
Description
Let's define a forest as a non-directed acyclic graph (also without loops and parallel edges). One day Misha played with the forest consisting of n vertices. For each vertex v from 0 to n - 1 he wrote down two integers, degreev and sv, were the first integer is the number of vertices adjacent to vertex v, and the second integer is the XOR sum of the numbers of vertices adjacent to v (if there were no adjacent vertices, he wrote down 0).
Next day Misha couldn't remember what graph he initially had. Misha has values degreev and sv left, though. Help him find the number of edges and the edges of the initial graph. It is guaranteed that there exists a forest that corresponds to the numbers written by Misha.
Input
The first line contains integer n (1 ≤ n ≤ 216), the number of vertices in the graph.
The i-th of the next lines contains numbers degreei and si (0 ≤ degreei ≤ n - 1, 0 ≤ si < 216), separated by a space.
Output
In the first line print number m, the number of edges of the graph.
Next print m lines, each containing two distinct numbers, a and b (0 ≤ a ≤ n - 1, 0 ≤ b ≤ n - 1), corresponding to edge (a, b).
Edges can be printed in any order; vertices of the edge can also be printed in any order.
Sample Input
3
2 3
1 0
1 0
2
1 1
1 0
Sample Output
2
1 0
2 0
1
0 1
Note
The XOR sum of numbers is the result of bitwise adding numbers modulo 2. This operation exists in many modern programming languages. For example, in languages C++, Java and Python it is represented as "^", and in Pascal — as "xor".
思路
题意:
有一个森林包含0-n-1这n个节点,给出每个节点与它相邻节点的个数以及与它相邻节点的异或和,问有几条边,每条边的连接的两个节点是多少。
题解:
可以看作是一个拓扑排序,每次找出只有一个节点与之相邻的节点,那么与之相邻的节点的序号就是这个节点的异或和。
#include<bits/stdc++.h>
using namespace std;
const int maxn = (1<<16)+5;
int deg[maxn],sum[maxn]; int main()
{
int n;
queue<int>que;
scanf("%d",&n);
for (int i = 0;i < n;i++)
{
scanf("%d%d",°[i],&sum[i]);
if (deg[i] == 1) que.push(i);
}
vector<pair<int,int> >ans;
while (!que.empty())
{
int u = que.front();
que.pop();
if (deg[u] == 0) continue;
int v = sum[u];
ans.push_back(make_pair(u,v));
deg[v]--,sum[v] ^= u;
if (deg[v] == 1) que.push(v);
}
int size = ans.size();
printf("%d\n",size);
for (int i = 0;i < size;i++) printf("%d %d\n",ans[i].first,ans[i].second);
return 0;
}
Codeforces Round #285 (Div. 2)C. Misha and Forest(拓扑排序)的更多相关文章
- Codeforces Round #285 (Div. 1) A. Misha and Forest 拓扑排序
题目链接: 题目 A. Misha and Forest time limit per test 1 second memory limit per test 256 megabytes 问题描述 L ...
- 图论/位运算 Codeforces Round #285 (Div. 2) C. Misha and Forest
题目传送门 /* 题意:给出无向无环图,每一个点的度数和相邻点的异或和(a^b^c^....) 图论/位运算:其实这题很简单.类似拓扑排序,先把度数为1的先入对,每一次少一个度数 关键在于更新异或和, ...
- 水题 Codeforces Round #285 (Div. 2) C. Misha and Forest
题目传送门 /* 题意:给出无向无环图,每一个点的度数和相邻点的异或和(a^b^c^....) 图论/位运算:其实这题很简单.类似拓扑排序,先把度数为1的先入对,每一次少一个度数 关键在于更新异或和, ...
- 字符串处理 Codeforces Round #285 (Div. 2) B. Misha and Changing Handles
题目传送门 /* 题意:给出一系列名字变化,问最后初始的名字变成了什么 字符串处理:每一次输入到之前的找相印的名字,若没有,则是初始的,pos[m] 数组记录初始位置 在每一次更新时都把初始pos加上 ...
- Codeforces Round #292 (Div. 1) B. Drazil and Tiles 拓扑排序
B. Drazil and Tiles 题目连接: http://codeforces.com/contest/516/problem/B Description Drazil created a f ...
- Codeforces Round #541 (Div. 2) D 并查集 + 拓扑排序
https://codeforces.com/contest/1131/problem/D 题意 给你一个n*m二维偏序表,代表x[i]和y[j]的大小关系,根据表构造大小分别为n,m的x[],y[] ...
- Codeforces Round #285 (Div. 1) B - Misha and Permutations Summation 康拓展开+平衡树
思路:很裸的康拓展开.. 我的平衡树居然跑的比树状数组+二分还慢.. #include<bits/stdc++.h> #define LL long long #define fi fir ...
- Codeforces Round #292 (Div. 2) D. Drazil and Tiles [拓扑排序 dfs]
传送门 D. Drazil and Tiles time limit per test 2 seconds memory limit per test 256 megabytes Drazil cre ...
- Codeforces Round #660 (Div. 2) Captain Flint and Treasure 拓扑排序(按照出度、入读两边拓扑排序)
题目链接:Captain Flint and Treasure 题意: 一种操作为 选一个下标 使得ans+=a[i] 且 把a[b[i]]+a[i] 要求每个下标都进行一种这样的操作,问怎么样的 ...
随机推荐
- Python内建函数enumerate()用法及在for循环应用
Python 内建函数enumerate() 由于这个单纯很长,不容易记住,用法还是比较广泛的,下面讲述Python内建函数enumerate()用法. 1,实例 enumerate(sequence ...
- nodejs回调大坑
最近看到nodejs,因为有一个处理里面有好几个异步操作,调入回调大坑,不禁觉得很恶心,真的很讨厌发明这种写法的人,简直反社会!!!遂转载一篇解坑的文章,原文地址:http://www.infoq.c ...
- Java编码技巧与代码优化
本文参考整理自https://mp.weixin.qq.com/s/-u6ytFRp-ZAqdLBsMmuDMw 对于在本文中有所疑问的点可以去该文章查看详情 常量&变量 直接赋值常量值, 禁 ...
- linux查看 rsync 服务状态
[root@rsync-server-1 /]# lsof -i tcp:873 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME rsync ...
- NLP 中 Attention Model 解析
Attention Model,简称AM模型,本文只谈文本领域的AM模型,其实图片领域AM的机制也是相同的. 目前绝大多数文献中出现的AM模型是附着在Encoder-Decoder框架下的,但是其实A ...
- [USACO07DEC]Sightseeing Cows(负环,0/1分数规划)
[USACO07DEC]Sightseeing Cows Description Farmer John has decided to reward his cows for their hard w ...
- maven 常用插件 拷贝依赖 拷贝jar包 查看属性 环境变量
1 maven编译后希望将生产的jar包拷贝到指定目录 在pom中配置maven插件 maven-antrun-plugin <build > <plugins> <pl ...
- [python 学习] argparse模块
https://docs.python.org/3/library/argparse.html#module-argparse
- 将ubuntu系统迁移到ssd固态
朋友送了一个固态硬盘给我,因此将原机械硬盘上的系统迁移到固态硬盘上. 原机械硬盘(dev/sdb)装有win10和ubuntu双系统.分区情况如下: sda1:ESP分区 sda2:资料 sda3:资 ...
- AOP技术介绍--(引言)
软件设计因为引入面向对象思想而逐渐变得丰富起来.“一切皆为对象”的精义,使得程序世界所要处理的逻辑简化,开发者可以用一组对象以及这些对象之间的关系将软件系统形象地表示出来.而从对象的定义,进而到模块, ...