MySQL 用 limit 为什么会影响性能?
一,前言
首先说明一下MySQL的版本:
mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.17 |
+-----------+
1 row in set (0.00 sec)
表结构:
+--------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------------+------+-----+---------+----------------+
| id | bigint(20) unsigned | NO | PRI | NULL | auto_increment |
| val | int(10) unsigned | NO | MUL | 0 | |
| source | int(10) unsigned | NO | | 0 | |
+--------+---------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)
id为自增主键,val为非唯一索引。
灌入大量数据,共500万:
mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
| 5242882 |
+----------+
1 row in set (4.25 sec)
我们知道,当limit offset rows中的offset很大时,会出现效率问题:
+---------+-----+--------+
| id | val | source |
+---------+-----+--------+
| 3327622 | 4 | 4 |
| 3327632 | 4 | 4 |
| 3327642 | 4 | 4 |
| 3327652 | 4 | 4 |
| 3327662 | 4 | 4 |
+---------+-----+--------+
5 rows in set (15.98 sec)
为了达到相同的目的,我们一般会改写成如下语句:
mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id | val | source | id |
+---------+-----+--------+---------+
| 3327622 | 4 | 4 | 3327622 |
| 3327632 | 4 | 4 | 3327632 |
| 3327642 | 4 | 4 | 3327642 |
| 3327652 | 4 | 4 | 3327652 |
| 3327662 | 4 | 4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.38 sec)
时间相差很明显。
为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:
查询到索引叶子节点数据。
根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。
类似于下面这张图:
肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:
其实我也想问这个问题。
证实
下面我们实际操作一下来证实上述的推论:
为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。
我只能通过间接的方式来证实:
InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5) b>之后,buffer pool中的数据页的数量远远少于对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。select * from test where val=4 limit 300000,5;
select * from test where val=4 limit 300000,5
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
Empty set (0.04 sec)
可以看出,目前buffer pool中没有关于test表的数据页。
mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id | val | source |
+---------+-----+--------+
| 3327622 | 4 | 4 |
| 3327632 | 4 | 4 |
| 3327642 | 4 | 4 |
| 3327652 | 4 | 4 |
| 3327662 | 4 | 4 |
+---------+-----+--------+
5 rows in set (26.19 sec)
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY | 4098 |
| val | 208 |
+------------+----------+
2 rows in set (0.04 sec)
可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。
select * from test a inner join (select id from test where val=4 limit 300000,5) b>为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。
mysqladmin shutdown
/usr/local/bin/mysqld_safe &
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
Empty set (0.03 sec)
运行sql:
mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id | val | source | id |
+---------+-----+--------+---------+
| 3327622 | 4 | 4 | 3327622 |
| 3327632 | 4 | 4 | 3327632 |
| 3327642 | 4 | 4 | 3327642 |
| 3327652 | 4 | 4 | 3327652 |
| 3327662 | 4 | 4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.09 sec)
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY | 5 |
| val | 390 |
+------------+----------+
2 rows in set (0.03 sec)
而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。
遇到的问题
为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。
参考资料:
1.https://explainextended.com/2009/10/23/mysql-order-by-limit-performance-late-row-lookups/
2.https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-buffer-pool-tables.html
作者:zhangyachen
来源:https://dwz.cn/K1Q1cePW
点击「阅读原文」和栈长学更多~
MySQL 用 limit 为什么会影响性能?的更多相关文章
- mysql的limit性能,数据库索引问题,dblog问题
mysql的limit性能,数据库索引问题,dblog问题,redis学习 继续学习. dblog实际上是把日志记录在另一个数据库里面. 问题1: 一张表定义了5个索引,但是sql语句中用到了3个有索 ...
- MYSQL分页limit速度太慢优化方法
http://www.fienda.com/archives/110 在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死 ...
- MySQL的Limit详解
问题:数据库查询语句,如何只返回一部分数据? Top子句 TOP 子句用于规定要返回的记录的数目.对于拥有数千条记录的大型表来说,TOP 子句是非常有用的. 在SQL Server数据库中语法为: S ...
- MySQL学习笔记(二)性能优化的笔记(转)
今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数据 ...
- MySQL的limit优化
mysql的分页比较简单,只需要limit offset,length就可以获取数据了,但是当offset和length比较大的时候,mysql明显性能下降 1.子查询优化法 先找出第一条数据,然后大 ...
- 记一次mysql关于limit和orderby的优化
针对于大数据量查询,我们一般使用分页查询,查询出对应页的数据即可,这会大大加快查询的效率: 在排序和分页同时进行时,我们一定要注意效率问题,例如: select a.* from table1 a i ...
- MySQL的limit查询优化
MySQL的limit查询优化以下的文章主要是对MySQL limit查询优化的具体内容的介绍,我们大家都知道MySQL数据库的优化是相当重要的.其他最为常用也是最为需要优化的就是limit.MySQ ...
- MySQL中distinct和group by性能比较[转]
MySQL中distinct和group by性能比较[转] 之前看了网上的一些测试,感觉不是很准确,今天亲自测试了一番.得出了结论(仅在个人计算机上测试,可能不全面,仅供参考) 测试过程: 准备一张 ...
- paip.提升性能---mysql 优化cpu多核以及lan性能的关系.
paip.提升性能---mysql 优化cpu多核以及lan性能的关系. 作者Attilax 艾龙, EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http:/ ...
随机推荐
- python re.match与re.search的区别
re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None:而re.search匹配整个字符串,直到找到一个匹配. #!/usr/bin/python impor ...
- ES6 Promise使用介绍
1.什么是Promise Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大. 这么说可能不够直观的理解,看下面的两个例子 // callback回调函数 ...
- Confluence 6 上传文件
当你上传一个文件的时候,例如上传一个图片或者文档,上传的文件将会附加到当前页面上. 你可以选择在页面中将文件显示为一个链接,一个图片或者嵌入到页面中(使用宏). 上传一个文件到页面中你需要具有空间的权 ...
- Python列表解析和字典解析
python笔记_列表解析 相比于for循环,列表解析的语法是由底层c语言实现的,它和使用for循环遍历pyobject对象相比,性能会有很大的提升. 无条件子句的列表解析式 In [2]: [2*i ...
- @vue/cli 3.x 版本配置productionGzip提高性能
第一步:安装插件 npm i -D compression-webpack-plugin 第二步:引入.在文件vue.config.js里导入compression-webpack-plugin,并添 ...
- 【Java基础】谈谈集合.List
摘自:https://www.cnblogs.com/54chensongxia/p/11722828.html 目录 1. ArrayList 1.1 ArrayList的构造 1.2 add方法 ...
- mybatis plus table doesn't exists
使用@TableName 注解即可 实际上就是建立bean与表名的连接
- What is the most efficient way to deep clone an object in JavaScript?
What is the most efficient way to deep clone an object in JavaScript? Reliable cloning using a libra ...
- axios的数据请求方式及跨域
express 的三大功能:静态资源.路由.模板引擎 app.use(express.static('www')); 只要是创建这个静态的目录,这个 www 的静态目录里面的文件就可以被访问 数据的请 ...
- spark MLlib 概念 2:Stratified sampling 层次抽样
定义: In statistical surveys, when subpopulations within an overall population vary, it is advantageou ...