import numpy as np
  import pandas as pd
1 #字符串常用方法 - strip
s = pd.Series([' jack ','jill',' jease ','feank'])
df = pd.DataFrame(np.random.randn(3,2),columns=[' Column A',' Column B'],index=range(3))
print(s)
print(df.columns) print('----')
print(s.str.lstrip().values)#去掉左边的空格
print(s.str.rstrip().values)#去掉右边的空格
df.columns = df.columns.str.strip()
print(df.columns)

结果:

0      jack
1 jill
2 jease
3 feank
dtype: object
Index([' Column A', ' Column B'], dtype='object')
----
['jack ' 'jill' 'jease ' 'feank']
[' jack' 'jill' ' jease' 'feank']
Index(['Column A', 'Column B'], dtype='object')
#字符串常用方法 - replace  替换字符串
df = pd.DataFrame(np.random.randn(3,2),columns=[' Columns A',' Columns B'],index = range(3))
print(df.columns)
df.columns = df.columns.str.replace(' ','-')
print(df.columns) df.columns = df.columns.str.replace('-','hehe',n=1)#表示用hehe去替换第一个' '
print(df.columns)

结果:

Index([' Columns A', '  Columns B'], dtype='object')
Index(['-Columns-A', '--Columns-B'], dtype='object')
Index(['heheColumns-A', 'hehe-Columns-B'], dtype='object')
#字符串常用方法 - split、rsplit  分成列表list的形式
s = pd.Series(['a,b,c','1,2,3',['a,,,c'],np.nan])
print(s)
print('----')
print(s.str.split(','))
print('----')
#类似于字符串的split
print(s.str.split(',')[0])#索引第一行
print(s.str.split(',').str[0])#第一列
print(s.str.split(',').str.get(1))#第二列
#可以使用get或者[]符号访问拆分列表的元素 print(s.str.split(',',expand=True,n=1))#n为拓展数量
print(s.str.rsplit(',',expand=True,n=1))#rsplit 从右到左分
#expand可以扩展此操作来返回DataFrame
#n参数限制分数
#rsplit类似于split,反向工作,即从字符串的末尾到字符串开头
print('dataframe:')
df = pd.DataFrame({'key1':['a,b,c','1,2,3',[',,,']],
'key2':['a-b-c','1-2-c',[',-,-,']]})
print(df['key2'])
print(df['key2'].str.split('-'))

结果:
0      a,b,c
1      1,2,3
2    [a,,,c]
3        NaN
dtype: object
----
0    [a, b, c]
1    [1, 2, 3]
2          NaN
3          NaN
dtype: object
----
['a', 'b', 'c']
0      a
1      1
2    NaN
3    NaN
dtype: object
0      b
1      2
2    NaN
3    NaN
dtype: object
     0    1
0    a  b,c
1    1  2,3
2  NaN  NaN
3  NaN  NaN
     0    1
0  a,b    c
1  1,2    3
2  NaN  NaN
3  NaN  NaN
dataframe:
0      a-b-c
1      1-2-c
2    [,-,-,]
Name: key2, dtype: object
0    [a, b, c]
1    [1, 2, c]
2          NaN
Name: key2, dtype: object

#字符串索引
s = pd.Series(['A','b','C','bbhello','',np.nan,'hj'])
df = pd.DataFrame({'key1':list('abcdef'),
'key2':['hee','fv','w','hjja','',np.nan]})
print(s,'\n-----')
print(s.str[0])#取第一个字符串
print(s.str[:2])#取前2个字符
print('-----')
print(df['key2'].str[0])
#str之后和字符串本身索引方式相同

结果:

0          A
1 b
2 C
3 bbhello
4 123
5 NaN
6 hj
dtype: object
-----
0 A
1 b
2 C
3 b
4 1
5 NaN
6 h
dtype: object
0 A
1 b
2 C
3 bb
4 12
5 NaN
6 hj
dtype: object
-----
0 h
1 f
2 w
3 h
4 1
5 NaN
Name: key2, dtype: object

2018.03.26 Python-Pandas 字符串常用方法的更多相关文章

  1. 2018.03.27 python pandas merge join 使用

    #2.16 合并 merge-join import numpy as np import pandas as pd df1 = pd.DataFrame({'key1':['k0','k1','k2 ...

  2. 2018/4/26 python文件处理方式

    目录 2018/4/26总结 1. 如果有一天群内问题总结: 问题:python2和python3的默认编码是什么? 2. python学习总结: python的处理文件方式 2018/4/26总结 ...

  3. python pandas字符串函数详解(转)

     pandas字符串函数详解(转)——原文连接见文章末尾 在使用pandas框架的DataFrame的过程中,如果需要处理一些字符串的特性,例如判断某列是否包含一些关键字,某列的字符长度是否小于3等等 ...

  4. Python入门-字符串常用方法

    Python 字符串 字符串是 Python 中最常用的数据类型.我们可以使用引号('或")来创建字符串. 创建字符串很简单,只要为变量分配一个值即可. var1 = 'Hello Worl ...

  5. Python中字符串常用方法

    capitalize() String.capitalize() 将字符串首字母变为大写 name = 'xiaoming' new_name = name.capitalize() print(ne ...

  6. python基础---字符串常用方法汇总

    s3 = '123's2 = ' 's1 = 'This Is \t Cash's='abcdefghijklmnopqrstuvwxyz's4 = "0000000this is stri ...

  7. 2018/03/26 每日一个Linux命令 之 du

    昨天使用 df 查看了磁盘空间中所有的容量. 今天学习 du 查看目录或者文件的大小. du会显示指定的目录或文件所占用的磁盘空间. -- du命令用来查看目录或文件所占用磁盘空间的大小.常用选项组合 ...

  8. Python 基础教程 —— Pandas 库常用方法实例说明

    目录 1. 常用方法 pandas.Series 2. pandas.DataFrame ([data],[index])   根据行建立数据 3. pandas.DataFrame ({dic})  ...

  9. python基础3 字符串常用方法

    一. 基础数据类型 总览 int:用于计算,计数,运算等. 1,2,3,100...... str:'这些内容[]'    用户少量数据的存储,便于操作. bool: True, False,两种状态 ...

随机推荐

  1. JAVA中如何定义自定义注解

    了解注解 注解是Java1.5,JDK5.0引用的技术,与类,接口,枚举处于同一层次 .它可以声明在包.类.字段.方法.局部变量.方法参数等的前面,用来对这些元素进行说明,注释 . 在Java中,自带 ...

  2. zabbix利用percona-toolkit工具监控Mysql主从同步状态

    一.下载percona-toolkit工具包 percona-toolkit是一组高级命令行工具的集合,可以查看当前服务的摘要信息,磁盘检测,分析慢查询日志,查找重复索引,实现表同步等等. [root ...

  3. Big Data(二)分布式文件系统那么多,为什么hadoop还需要一个hdfs文件系统?

    提纲 - 存储模型- 架构设计- 角色功能- 元数据持久化- 安全模式- 副本放置策略- 读写流程- 安全策略 存储模型 - 文件线性按字节切割成块(block),具有offset,id - 文件与文 ...

  4. pyinstaller 打包工具的使用方法

    pyinstaller的安装 下载后可以输入pip list查看是否安装成功 然后切换到项目的根目录输入 pyinstaller -i favicon.ico -w -c game.py -p Que ...

  5. 4.华为路由交换技术_IP路由选择原理(上)

    初始化时,路由表上只有直连路由 查看路由表 严格来讲任何一个具有三层路由功能的设备都有路由表 数据通信往往是双向的的,来回都要考虑. 路由是逐跳的,每一跳都要设置. 实际路由是根据已经分配的网络段进行 ...

  6. Kendo UI for jQuery使用教程:入门指南

    [Kendo UI for jQuery最新试用版下载] Kendo UI目前最新提供Kendo UI for jQuery.Kendo UI for Angular.Kendo UI Support ...

  7. python类库26[sqlite]

    一 sqlite 与 python 的类型对应 二 实例 import sqlite3 def sqlite_basic():     # Connect to db     conn = sqlit ...

  8. mysql参数sql_log_bin配置

    mysql参数sql_log_bin配置 如果想在主库上执行一些操作,但不复制到slave库上,可以通过修改参数sql_log_bin来实现.比如说,这里模拟主从同步复制异常. 还有一种场景,就是导入 ...

  9. arch+xfce4音量控制快捷键插件

    音量控制快捷键插件: sudo pacman -S xfce4-volumed

  10. PHP 字符串相关常识

    0x00 前言 第一次遇见字符串这个概念是在学 C 语言的时候,那时候觉得字符串也没有什么难的,不就是一个以 \0 结尾的 char 数组而已咯.后来在学习 PHP 的过程中也同样保持这个观念,不过在 ...