Nature/Science 论文阅读笔记

Unsupervised word embeddings capture latent knowledge from materials science literature

The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical analysis or modern machine learning methods.

By contrast, the main source of machine-interpretable data for the materials research community has come from structured property databases, which encompass only a small fraction of the knowledge present in the research literature.

Beyond property values, publications contain valuable knowledge regarding the connections and relationships between data items as interpreted by the authors.

To improve the identification and use of this knowledge, several studies have focused on the retrieval of information from scientific literature using supervised natural language processing, which requires large hand-labelled datasets for training.

Here we show that materials science knowledge present in the published literature can be efficiently encoded as information-dense word embeddings (vector representations of words) without human labelling or supervision.

Without any explicit insertion of chemical knowledge, these embeddings capture complex materials science concepts such as the underlying structure of the periodic table and structure–property relationships in materials.

Furthermore, we demonstrate that an unsupervised method can recommend materials for functional applications several years before their discovery.

This suggests that latent knowledge regarding future discoveries is to a large extent embedded in past publications.

Our findings highlight the possibility of extracting knowledge and relationships from the massive body of scientific literature in a collective manner, and point towards a generalized approach to the mining of scientific literature.

《无监督词嵌入从材料科学文献中获取潜在知识》

绝大多数的科学知识都是以文本形式发表的,无论是传统的统计分析还是现代的机器学习方法都很难对其进行分析。

相比之下,材料研究界机器可解释数据的主要来源是结构化属性数据库,其中仅包含研究文献中的一小部分知识。

除了属性值之外,出版物还包含关于作者解释的数据项之间的连接和关系的有价值的知识。

为了更好地识别和利用这些知识,一些研究集中在利用有监督的自然语言处理从科学文献中检索信息,这需要大量的手工标注数据集进行训练。

在这里,我们表明,在没有人类标记或监督的情况下,已发表文献中的材料科学知识可以有效地编码为信息密集的单词嵌入(单词的向量表示)。

没有任何化学知识的明确插入,这些嵌入捕捉复杂的材料科学概念,如周期表的底层结构和材料中的结构-性质关系。

此外,我们还证明了无监督方法可以在材料发现前几年为功能应用推荐材料。

这表明,有关未来发现的潜在知识在很大程度上嵌入了过去的出版物中。

我们的发现强调了以集体的方式从大量的科学文献中提取知识和关系的可能性,并指出了挖掘科学文献的普遍方法。

Nature/Science 论文阅读笔记的更多相关文章

  1. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  2. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  3. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  4. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  5. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  6. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  7. 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification

    论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...

  8. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

  9. [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks

    [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...

随机推荐

  1. render:h => h(App) ----render函数

    转载其他博客1 new Vue({ 2 3 router, 4 store, 5 //components: { App } vue1.0的写法 6 render: h => h(App) vu ...

  2. iOS用contenteditable滚动时,光标不会刷新定位的处理方法

    分析 iOS的 wkwebview 在滚动时会暂停许多动画,作为优化 解决思路 监听滚动事件,利用文档重绘即可刷新动画 ps:因为滚动有惯性,touchmove事件只能监听到手指松开的那一刻,所以只能 ...

  3. mysql数据库查询过程探究和优化建议

    查询过程探究 我们先看一下向mysql发送一个查询请求时,mysql做了什么? 如上图所示,查询执行的过程大概可分为6个步骤: 客户端向MySQL服务器发送一条查询请求 服务器首先检查查询缓存,如果命 ...

  4. python、mysql三-3:完整性约束

    一 介绍 约束条件与数据类型的宽度一样,都是可选参数 作用:用于保证数据的完整性和一致性主要分为: PRIMARY KEY (PK) 标识该字段为该表的主键,可以唯一的标识记录 FOREIGN KEY ...

  5. deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  6. 08Response

    1.功能:设置响应消息 1. 设置响应行 1. 格式:HTTP/1.1 200 ok 2. 设置状态码:setStatus(int sc) 2. 设置响应头:setHeader(String name ...

  7. gson转换问题

    list集合中integer问题 List<Integer> lists= gson.fromJson(params.get("lists"), new TypeTok ...

  8. 原生js实现简单的下拉刷新功能

    前言: 我们在浏览移动端web页面的时候,经常会用到下拉刷新. 现在我们用原生的js实现这个非常简单的下拉刷新功能. (温馨提示:本文比较基础,功能也很简单.写的不好的地方,希望大神提点一二.) 一. ...

  9. 【转载】awk入门

    作者: 阮一峰 http://www.ruanyifeng.com/blog/2018/11/awk.html awk是处理文本文件的一个应用程序,几乎所有 Linux 系统都自带这个程序. 它依次处 ...

  10. vue中使用iconfont和在旧有的iconfont中添加新的图标

    todo 使用参考:https://blog.csdn.net/qq_34802010/article/details/81451278 大体步骤是正确的,具体可参考官方文档和下载下来的代码中的dem ...