卷积神经网络(ConvNets)中卷积的实现
#include <iostream>
#include <sstream>
#include <fstream>
#include <algorithm>
#include <vector> void Conv(std::vector<std::vector<int> > &vv_image, std::vector<std::vector<int> > &vv_filter, std::vector<std::vector<int> > &Feature_map) {
size_t new_col=vv_image.at().size()-vv_filter.at().size()+;
size_t new_row=vv_image.size()-vv_filter.size()+;
for(size_t i=; i<new_row; ++i) {
std::vector<int> v_tmp;
v_tmp.clear();
for(size_t j=; j<new_col; ++j) {
int sum_tmp=;
for(size_t k=; k<vv_filter.size(); ++k) {
for(size_t l=; l<vv_filter.at().size(); ++l) {
sum_tmp += vv_filter.at(k).at(l) * vv_image.at(i+k).at(j+l);
}
}
v_tmp.push_back(sum_tmp);
}
Feature_map.push_back(v_tmp);
}
} template <class T>
void ReadMatFromFile(std::string &filename, std::vector<std::vector<T> > &lines_feat) {
std::ifstream vm_info(filename.c_str());
std::string lines;
T var;
std::vector<T> row; lines_feat.clear(); while(!vm_info.eof()) {
getline(vm_info, lines);
if(lines.empty())
break;
std::replace(lines.begin(), lines.end(), ',', ' ');
std::stringstream stringin(lines);
row.clear(); while(stringin >> var) {
row.push_back(var);
}
lines_feat.push_back(row);
}
} template <class T>
void Display2DVector(const std::vector<std::vector<T> > &vv) {
for(size_t i=;i<vv.size();++i) {
for(typename::std::vector<T>::const_iterator it=vv.at(i).begin();it!=vv.at(i).end();++it) {
std::cout<<*it<<" ";
}
std::cout<<"\n";
}
std::cout<<"--------the total of the 2DVector is "<<vv.size()<<std::endl;
} int main() {
std::string image_data("image.dat"), filter_data("filter.dat");
std::vector<std::vector<int> > vv_image, vv_filter; ReadMatFromFile(image_data, vv_image);
ReadMatFromFile(filter_data, vv_filter); std::vector<std::vector<int> > Feature_map; Conv(vv_image, vv_filter, Feature_map);
Display2DVector(Feature_map); return ;
}
卷积神经网络(ConvNets)中卷积的实现的更多相关文章
- 深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播
卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别 分类 相似图像搜索 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...
- deeplearning.ai 卷积神经网络 Week 1 卷积神经网络 听课笔记
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...
- 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...
- deeplearning.ai 卷积神经网络 Week 2 卷积神经网络经典架构
1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based lea ...
- deeplearning.ai 卷积神经网络 Week 1 卷积神经网络
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...
- CS231n课程笔记翻译9:卷积神经网络笔记
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列 ...
- 【cs231n】卷积神经网络
较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权 ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- paper 162:卷积神经网络(CNN)解析
卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...
随机推荐
- lazarus 线程调试
lazarus站点的文档中看到的.简单用法: uses LCLProc; DbgOutThreadLog (msg: string); overload; --有好几个不同参数的定义.
- java+web+批量下载文件
JavaWeb 文件下载功能 文件下载的实质就是文件拷贝,将文件从服务器端拷贝到浏览器端,所以文件下载需要IO技术将服务器端的文件读取到,然后写到response缓冲区中,然后再下载到个人客户端. 1 ...
- FJOI2017 day2游记
day0 早上复习了一下凸包,lct的板子,发现现在的我好菜鸡啊,做题基本上还得看题解,自己不是很能分析出来. 下午去看考场,在附中机房又写了一遍lct,然后a掉了文理分科完就回去了. 回家的路上走在 ...
- nginx报错 nginx: [alert] kill(25903, 1) failed (3: No such process)
当nginx 中报错 时 nginx报错 nginx: [alert] kill(25903, 1) failed (3: No such process) 通过在nginx/sbin,目录下 运行命 ...
- 满减 HRBUST - 2455
https://vjudge.net/problem/HRBUST-2455 有两种优惠方式,一是满400减100,另外一种是商品自带折扣,二者不可叠加 dp[i][j]表示前i种商品,(参与满400 ...
- SQL server 安装教程
双击sql server 2008的.exe安装文件,进入[SQL Server 安装中心]. 点击界面左侧的[安装],然后点击右侧的[全新SQL Server 独立安装或向现有安装添加功能],进 ...
- 20175221 《Java程序设计》第10周学习总结
20175221 <Java程序设计>第10周学习总结 教材学习内容总结 第十二章主要内容有: 进程与线程 进程是程序的一次动态执行过程,它对应了从代码加载.执行至执行完毕的一个完整过 ...
- Android NDK的生命周期JNI_OnLoad与JNI_OnUnload(转)
摘要 NDK的生命周期 //当动态库被加载时这个函数被系统调用 JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *vm, void *reserved) { LOGI ...
- React Native商城项目实战03 - 包装Navigator
1.在Home目录下新建首页详细页HomeDetail.js /** * 首页详情页 */ import React, { Component } from 'react'; import { App ...
- Git-Runoob:Git 工作流程
ylbtech-Git-Runoob:Git 工作流程 1.返回顶部 1. Git 工作流程 本章节我们将为大家介绍 Git 的工作流程. 一般工作流程如下: 克隆 Git 资源作为工作目录. 在克隆 ...