卷积神经网络(ConvNets)中卷积的实现
#include <iostream>
#include <sstream>
#include <fstream>
#include <algorithm>
#include <vector> void Conv(std::vector<std::vector<int> > &vv_image, std::vector<std::vector<int> > &vv_filter, std::vector<std::vector<int> > &Feature_map) {
size_t new_col=vv_image.at().size()-vv_filter.at().size()+;
size_t new_row=vv_image.size()-vv_filter.size()+;
for(size_t i=; i<new_row; ++i) {
std::vector<int> v_tmp;
v_tmp.clear();
for(size_t j=; j<new_col; ++j) {
int sum_tmp=;
for(size_t k=; k<vv_filter.size(); ++k) {
for(size_t l=; l<vv_filter.at().size(); ++l) {
sum_tmp += vv_filter.at(k).at(l) * vv_image.at(i+k).at(j+l);
}
}
v_tmp.push_back(sum_tmp);
}
Feature_map.push_back(v_tmp);
}
} template <class T>
void ReadMatFromFile(std::string &filename, std::vector<std::vector<T> > &lines_feat) {
std::ifstream vm_info(filename.c_str());
std::string lines;
T var;
std::vector<T> row; lines_feat.clear(); while(!vm_info.eof()) {
getline(vm_info, lines);
if(lines.empty())
break;
std::replace(lines.begin(), lines.end(), ',', ' ');
std::stringstream stringin(lines);
row.clear(); while(stringin >> var) {
row.push_back(var);
}
lines_feat.push_back(row);
}
} template <class T>
void Display2DVector(const std::vector<std::vector<T> > &vv) {
for(size_t i=;i<vv.size();++i) {
for(typename::std::vector<T>::const_iterator it=vv.at(i).begin();it!=vv.at(i).end();++it) {
std::cout<<*it<<" ";
}
std::cout<<"\n";
}
std::cout<<"--------the total of the 2DVector is "<<vv.size()<<std::endl;
} int main() {
std::string image_data("image.dat"), filter_data("filter.dat");
std::vector<std::vector<int> > vv_image, vv_filter; ReadMatFromFile(image_data, vv_image);
ReadMatFromFile(filter_data, vv_filter); std::vector<std::vector<int> > Feature_map; Conv(vv_image, vv_filter, Feature_map);
Display2DVector(Feature_map); return ;
}
卷积神经网络(ConvNets)中卷积的实现的更多相关文章
- 深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播
卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别 分类 相似图像搜索 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...
- deeplearning.ai 卷积神经网络 Week 1 卷积神经网络 听课笔记
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...
- 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...
- deeplearning.ai 卷积神经网络 Week 2 卷积神经网络经典架构
1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based lea ...
- deeplearning.ai 卷积神经网络 Week 1 卷积神经网络
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...
- CS231n课程笔记翻译9:卷积神经网络笔记
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列 ...
- 【cs231n】卷积神经网络
较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权 ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- paper 162:卷积神经网络(CNN)解析
卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...
随机推荐
- markdown编辑器常用命令
# 标题H1## 标题H2### 标题H3#### 标题H4##### 标题H5###### 标题H5插入java代码: 以```java表示java代码开始,以```表示代码结束 ```javapu ...
- aspose 模板输出
Dictionary<string, string> dictionnaryBig = new Dictionary<string, string>(); dictionnar ...
- POJ 3275 Ranking the cows ( Floyd求解传递闭包 && Bitset优化 )
题意 : 给出 N 头牛,以及 M 个某些牛之间的大小关系,问你最少还要确定多少对牛的关系才能将所有的牛按照一定顺序排序起来 分析 : 这些给出的关系想一下就知道是满足传递性的 例如 A > B ...
- BZOJ1460: Pku2114 Boatherds
题目链接:点这里 题目描述:给你一棵n个点的带权有根树,有p个询问,每次询问树中是否存在一条长度为Len的路径,如果是,输出Yes否输出No. 数据范围:\(n\le1e5\,,p\le100\,,长 ...
- CQOI2010 传送带
题目链接:戳我 分别枚举线段AB上的出发点,和线段CD上的到达点,然后时间直接计算,取min就可以了. 但是这样子显然会T飞,(相当于1e5的平方吧?)所以我们进一步考虑性质. 然后打表(或者感性理解 ...
- (62)通信协议之一protobuf
Protobuf协议特点分析 KingKa.吴永聪 1.protobuf是什么? protobuf(Google Protocol Buffers)是Google提供的一个具有高效的协议数据交换格式 ...
- 大哥带的Orchel数据库的报错注入
0X01 使用报错注入需要使用类似 1=[报错语句],1>[报错语句],使用比较运算符,这样的方式进行报错注入(MYSQL仅使用函数报错即可),类似mssql报错注入的方式. news.jsp? ...
- 【Python】学习笔记二:基本数据类型
变量 python的变量不需要提前声明,可以直接输入: >>> str = 'oliver' 此时,str已经被赋值字符串oliver,在赋值之前并没有提前定义与事先声明 打印值 & ...
- Abrt
https://abrt.readthedocs.io/en/latest/faq.html#unpackaged
- win 10 hosts文件不生效
win 10 hosts文件不生效 windows 10 hosts文件修改了,但是怎么都无法在浏览器中进行解析.一直都在等待,直到链接超时. 最后解决办法: 把hosts文件内容复制出来 ...