题目

orz myy

首先注意到答案有单调性,于是我们可以考虑二分一个\(x\),之后去判断一下每次只使用长度为\(x\)的区间能否删出目标序列

显然我们应该贪心地删除需要删除元素中最小的那一个,感性理解就是先删除最小的能使得接下来删除的限制尽量小

复杂度是\(O(qn^2\log n)\)

再大致理解一下发现我们并不需要二分,对于一个需要删除的元素,需要用到的最大区间长度是可以算出来的;我们搞一个单调栈,处理出每一个需要删除的元素左右两边第一个比它小的不需要删除的\(l_i,r_i\),再减去\((l_i,r_i)\)这个开区间里需要删除的且比\(a_i\)小的元素就是可能的最大区间长度了(根据上面的贪心,这些元素之前就被删除了),答案即所有可能最大区间长度的最小值

由于我们不能将需要删除的元素加入单调栈,所以必须在单调栈上二分求出\(l_i,r_i\),复杂度是\(O(qn\log n)\)

之后还要减掉\((l_i,r_i)\)里需要删除且比\(a_i\)小的元素个数,看起来不是很好处理,但我们只需要减掉\((l_i,r_i)\)里需要删除的元素个数即可,由于我们求得是最小值,这样并不会影响答案

考虑\((l_i,r_i)\)里一个比\(a_i\)大的需要删除元素,这个元素形成的区间一定比\(a_i\)短,能形成的最小值一定比\(a_i\)形成的小

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=1e6+5;
int n,Q,top,cnt;
int st[maxn],a[maxn],l[maxn],r[maxn],pre[maxn];
char S[maxn];
inline int find(int x) {
int L=1,R=top,nw=0;
while(L<=R) {
int mid=L+R>>1;
if(a[st[mid]]<x) nw=st[mid],L=mid+1;else R=mid-1;
}
return nw;
}
int main() {
n=read();a[0]=a[n+1]=-1;
for(re int i=1;i<=n;i++) a[i]=read();
Q=read();
while(Q--) {
scanf("%s",S+1);st[top=1]=0;cnt=0;
for(re int i=1;i<=n;i++)
if(S[i]=='1') {
while(top&&a[st[top]]>a[i]) --top;
st[++top]=i;
}
else l[i]=find(a[i])+1;
st[top=1]=n+1;
for(re int i=n;i;--i)
if(S[i]=='1') {
while(top&&a[st[top]]>a[i]) --top;
st[++top]=i;
}
else r[i]=find(a[i])-1,++cnt;
for(re int i=1;i<=n;i++) pre[i]=pre[i-1]+(S[i]=='0');
int ans=n;
for(re int i=1;i<=n;i++) if(S[i]=='0')
ans=min(ans,r[i]-l[i]+1-pre[r[i]]+pre[l[i]-1]);
printf("%d\n",ans+1);
}
return 0;
}

uoj#186 【UR #13】Yist的更多相关文章

  1. uoj#187. 【UR #13】Ernd

    http://uoj.ac/problem/187 每个点只能从时间,b+a,b-a三维都不大于它的点转移过来,将点按时间分成尽量少的一些段,每段内三维同时非严格单调,每段内的点可能因为连续选一段而产 ...

  2. UOJ 188 【UR #13】Sanrd——min_25筛

    题目:http://uoj.ac/problem/188 令 \( s(n,j)=\sum\limits_{i=1}^{n}[min_i>=p_j]f(j) \) ,其中 \( min_i \) ...

  3. 【UR #13】Yist

    UOJ小清新题表 题目摘要 UOJ链接 给出一个排列 \(A\) 以及它的一个非空子序列 \(B\),给出一个 \(x\) 并进行若干次操作,每一次操作需要在 \(A\) 中选择一个长度恰好为 \(x ...

  4. uoj#188. 【UR #13】Sanrd(Min_25筛)

    题面 传送门 题解 这是一道语文题 不难看出,题目所求即为\(l\)到\(r\)中每个数的次大质因子 我们考虑\(Min\_25\)筛的过程,设 \[S(n,j)=\sum_{i=1}^nsec_p( ...

  5. UOJ #188. 【UR #13】Sanrd

    Description 给定 \(\sum_{i=l}^r f[i]\) \(f[i]=\) 把 \(i\) 的每一个质因子都从小到大排列成一个序列(\(p_i^{c_i}\)要出现 \(c_i\) ...

  6. 「uoj#188. 【UR #13】Sanrd」

    题目 不是很能看懂题意,其实就是求\([l,r]\)区间内所有数的次大质因子的和 这可真是看起来有点鬼畜啊 这显然不是一个积性函数啊,不要考虑什么特殊的函数了 我们考虑Min_25筛的过程 设\(S( ...

  7. UOJ 241. 【UR #16】破坏发射台 [矩阵乘法]

    UOJ 241. [UR #16]破坏发射台 题意:长度为 n 的环,每个点染色,有 m 种颜色,要求相邻相对不能同色,求方案数.(定义两个点相对为去掉这两个点后环能被分成相同大小的两段) 只想到一个 ...

  8. uoj #118. 【UR #8】赴京赶考 水题

    #118. [UR #8]赴京赶考 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/118 Description ...

  9. uoj #31. 【UR #2】猪猪侠再战括号序列 贪心

    #31. [UR #2]猪猪侠再战括号序列 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/31 Descript ...

随机推荐

  1. 整理eclipse,升级jdk环境小记录

    这2天在整理项目: 需要把eclipse 32位,jdk1.6 32位的更改为eclipse 64位,jdk1.8 64位版本的,于是我就在一台window7的电脑上直接操作,遇到了一下几点问题,记录 ...

  2. VMware中Centos7的静态ip设置

    网络连接方式:桥接模式.修改后确定.启动centos7,root账户进行登录. 2.修改网卡配置文件 (1) 打开网卡配置文件 vim /etc/sysconfig/network-scripts/i ...

  3. 新手学习 React 迷惑的点

    网上各种言论说 React 上手比 Vue 难,可能难就难不能深刻理解 JSX,或者对 ES6 的一些特性理解得不够深刻,导致觉得有些点难以理解,然后说 React 比较难上手,还反人类啥的,所以我打 ...

  4. C#log4net的使用

    一,下载log4net.dll,在项目中添加引用 二,在站点根目录添加,配置文件(log4net.xml), <file value="logs/logfile.txt"/& ...

  5. DOM查询的其他方法

    document.body 保存的是body的引用 documen.documentElement 保存的是html根标签 document.all 代表页面中所有的元素 getElementsByC ...

  6. HTML中的img标签属性

    <img>标签 标签用于插入图片.它是单独使用的,没有闭合标签. <img src="https://fakeimg.pl/350x200/ff0000,128/000,2 ...

  7. Vue中app实例对象的几种写法

    1.传统方法(练习 小DEMO中用的这种) <script type="text/ecmascript"> var app=new Vue({ el:"#ap ...

  8. cocos2D-X not config ndk path

    { 双击击那个error,那个路径就加上了 File = >local.properties }

  9. websocket 中使用Service层的方法

    创建公共Utils 类 ApplicationContextRegister @Component @Lazy(false) public class ApplicationContextRegist ...

  10. 【IP】DHCP介绍

    DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)是一个局域网的网络协议,使用UDP协议工作, 主要有两个用途:给内部网络或网络服务供应商自动分配IP ...