2018焦作网络赛-E- Jiu Yuan Wants to Eat
题目描述
There is a tree with n nodes, each node i contains weight a[i], the initial value of a[i] is 0. The root number of the tree is 1. Now you need to do the following operations:
1) Multiply all weight on the path from u to v by x
2) For all weight on the path from u to v, increasing x to them
3) For all weight on the path from u to v, change them to the bitwise NOT of them
4) Ask the sum of the weight on the path from u to v
The answer modulo 2^64.
Jiu Yuan is a clever girl, but she was not good at algorithm, so she hopes that you can help her solve this problem. Ding~~~
The bitwise NOT is a unary operation that performs logical negation on each bit, forming the ones' complement of the given binary value. Bits that are 0 become 1, and those that are 1 become 0. For example:
NOT 0111 (decimal 7) = 1000 (decimal 8)
NOT 10101011 = 01010100
输入
For each group of data, the first line contains a number of n, and the number of nodes.
The second line contains (n - 1) integers bi, which means that the father node of node (i +1) is bi.
The third line contains one integer m, which means the number of operations,
The next m lines contain the following four operations:
At first, we input one integer opt
1) If opt is 1, then input 3 integers, u, v, x, which means multiply all weight on the path from u to v by x
2) If opt is 2, then input 3 integers, u, v, x, which means for all weight on the path from u to v, increasing x to them
3) If opt is 3, then input 2 integers, u, v, which means for all weight on the path from u to v, change them to the bitwise NOT of them
4) If opt is 4, then input 2 integers, u, v, and ask the sum of the weights on the path from u to v
1 ≤ n, m, u, v ≤ 10^5
1 ≤ x < 2^64
输出
样例输入
7
1 1 1 2 2 4
5
2 5 6 1
1 1 6 2
4 5 6
3 5 2
4 2 2
2
1
4
3 1 2
4 1 2
3 1 1
4 1 1
样例输出
5
18446744073709551613
18446744073709551614
0
题意
给一棵n个节点的有根树,每个节点有权值,初始是0,m次操作
u v x:给u v路径上的点权值*x
u v x:给u v路径上的点权值+x
u v:给u v路径上的点权值取反
u v:询问u v路径上的权值和,对2^64取模 树链剖分:https://wenku.baidu.com/view/a088de01eff9aef8941e06c3.html 然后如果没有取反操作,线段树维护和sum,加法标记add和乘法标记mul即可
对于取反操作,因为是对2^64取模的,即x+(!x)=^-,所以x=(^-)-x,因此取反就变成乘法和加法了:!x=(-)*x+(-) (-1对于2^64取模后是(^-))
#include <bits/stdc++.h>
#define ull unsigned long long
using namespace std;
const int N=1e5+;
int n,m,tot,cnt;
int fa[N],last[N];
int son[N],deep[N],dfn[N],num[N],top[N];//重儿子 深度 dfs序 子树规模 所在重链的顶端节点
ull sum[N*],add[N*],mul[N*];
struct orz{
int v,nex;}e[N];
void init()
{
cnt=;
tot=;
memset(last,,sizeof(last));
memset(son,-,sizeof(son));
}
void Inses(int x,int y)
{
cnt++;
e[cnt].v=y;
e[cnt].nex=last[x];
last[x]=cnt;
}
void dfs1(int x,int d)
{
deep[x]=d;
num[x]=;
for (int i=last[x];i;i=e[i].nex)
{
int v=e[i].v;
dfs1(v,d+);
num[x]+=num[v];
if (son[x]==- || num[v]>num[son[x]]) son[x]=v;
}
}
void dfs2(int x,int sp)
{
top[x]=sp;
dfn[x]=++tot;
if (son[x]==-) return ;
dfs2(son[x],sp);
for (int i=last[x];i;i=e[i].nex)
{
int v=e[i].v;
if (v!=son[x]) dfs2(v,v);
}
}
void PushUp(int s)
{
sum[s]=sum[s<<]+sum[s<<|];
}
void PushDown(int s,int l,int r)
{
if (mul[s]!=)
{
mul[s<<]*=mul[s];
mul[s<<|]*=mul[s];
add[s<<]*=mul[s];
add[s<<|]*=mul[s];
sum[s<<]*=mul[s];
sum[s<<|]*=mul[s];
mul[s]=;
} if (add[s])
{
add[s<<]+=add[s];
add[s<<|]+=add[s];
int mid=(l+r)>>;
sum[s<<]+=(ull)(mid-l+)*add[s];
sum[s<<|]+=(ull)(r-mid)*add[s];
add[s]=;
}
} void build(int s,int l,int r)
{
sum[s]=add[s]=;
mul[s]=;
if (l==r) return ;
int m=(l+r)>>;
build(s<<,l,m); build(s<<|,m+,r);
PushUp(s);
}
void update(int s,int l,int r,int L,int R,ull val,int op)
{
//printf("s=%d,l=%d,r=%d,L=%d,R=%d\n",s,l,r,L,R);
if (L<=l&&r<=R)
{
if (l!=r) PushDown(s,l,r);
if (op==)
{
mul[s]*=val;
add[s]*=val;
sum[s]*=val;
}
else if (op==)
{
add[s]+=val;
sum[s]+=(ull)(r-l+)*val;
}
else
{
mul[s]*=val;
add[s]*=val;
add[s]+=val;
sum[s]=(ull)(r-l+)*val-sum[s];
}
return;
}
PushDown(s,l,r);
int mid=(l+r)>>;
if (L<=mid) update(s<<,l,mid,L,R,val,op);
if (R>mid) update(s<<|,mid+,r,L,R,val,op);
PushUp(s);
}
ull query(int s,int l,int r,int L,int R)
{
if (L<=l&&r<=R) return sum[s];
PushDown(s,l,r);
int mid=(l+r)>>;
ull ans=;
if (L<=mid) ans+=query(s<<,l,mid,L,R);
if (R>mid) ans+=query(s<<|,mid+,r,L,R);
PushUp(s);
return ans;
}
void solve(int op,int x, int y,ull val)
{
if (op==) val=-;
if (op<=)
{
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x, y);
update(,,n,dfn[top[x]],dfn[x],val,op);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
update(,,n,dfn[x],dfn[y],val,op);
}
else
{
ull ans=;
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x, y);
ans+=query(,,n,dfn[top[x]],dfn[x]);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
ans+=query(,,n,dfn[x],dfn[y]);
printf("%llu\n",ans);
}
} int main()
{
while (scanf("%d",&n)!=EOF)
{
init();
for (int i=;i<=n;i++)
{
scanf("%d",&fa[i]);
Inses(fa[i],i);
}
dfs1(,);
dfs2(,);
build(,,n);
scanf("%d",&m);
int op,u,v; ull x;
while (m--)
{
scanf("%d",&op);
if (op== || op==) scanf("%d%d%llu",&u,&v,&x);
else scanf("%d%d",&u,&v);
solve(op,u,v,x);
}
}
return ;
}
2018焦作网络赛-E- Jiu Yuan Wants to Eat的更多相关文章
- 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat
题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...
- ACM-ICPC 2018 焦作赛区网络预赛 E Jiu Yuan Wants to Eat (树链剖分+线段树)
题目链接:https://nanti.jisuanke.com/t/31714 题意:给你一棵树,初始全为0,有四种操作: 1.u-v乘x 2.u-v加x 3. u-v取反 4.询问u-v ...
- ACM-ICPC 2018 焦作赛区网络预赛 E. Jiu Yuan Wants to Eat (树链剖分-线性变换线段树)
树链剖分若不会的话可自行学习一下. 前两种操作是线性变换,模\(2^{64}\)可将线段树全部用unsigned long long 保存,另其自然溢出. 而取反操作比较不能直接处理,因为其模\(2^ ...
- 2018焦作网络赛Mathematical Curse
题意:开始有个数k,有个数组和几个运算符.遍历数组的过程中花费一个运算符和数组当前元素运算.运算符必须按顺序花费,并且最后要花费完.问得到最大结果. 用maxv[x][y]记录到第x个元素,用完了第y ...
- 2018焦作网络赛Give Candies
一开始忽略了欧拉定理指数部分是modphi(n-1)没有memset,减法后面没加0:
- 2018焦作网络赛 - Poor God Water 一道水题的教训
本题算是签到题,但由于赛中花费了过多的时间去滴吧格,造成了不必要的浪费以及智商掉线,所以有必要记录一下坑点 题意:方格从1到n,每一格mjl可以选择吃鱼/巧克力/鸡腿,求走到n格时满足 1.每三格不可 ...
- ACM-ICPC 2018 焦作网络赛
题目顺序:A F G H I K L 做题链接 A. Magic Mirror 题意:判断 给出的 字符串 是否等于"jessie",需要判断大小写 题解:1.用stl库 tolo ...
- 2018 焦作网络赛 K Transport Ship ( 二进制优化 01 背包 )
题目链接 题意 : 给出若干个物品的数量和单个的重量.问你能不能刚好组成总重 S 分析 : 由于物品过多.想到二进制优化 其实这篇博客就是存个二进制优化的写法 关于二进制优化的详情.百度一下有更多资料 ...
- 2018 焦作网络赛 G Give Candies ( 欧拉降幂 )
题目链接 题意 : 给出 N 个糖果.老师按顺序给 1~N 编号的学生分配糖果.每个学生要么不分.要么最少分一个.且由于是按顺序发放.那么对于某个有分到糖果的编号为 i 的学生.则 1~(i-1) 这 ...
随机推荐
- Linux软件管理--RPM工具
目录 Linux软件管理--RPM工具 Rpm基础概述: Rpm包安装管理 Linux软件管理--RPM工具 Rpm基础概述: RPM全称RPM Package Manager缩写,由红帽开发用于软件 ...
- awk 起始位置和长度和 mf 一致
1位开始 , 925开始 截取24 awk '{OFS="";print(substr($0,925,24),substr($0,1,24),substr($0,436,1),&q ...
- 不修改源代码,动态注入Java代码的方法(转)
转自:https://blog.csdn.net/hiphoon_sun/article/details/38707927 有时,我们需要在不修改源代码的前提下往一个第三方的JAVA程序里注入自己的代 ...
- mysql-alter语句常用操作
删除列 alter table table-name drop col-name 增加列(多列) alter table table-name add col-name col-type commen ...
- react 使用axios
1.配置axios代理 使得axios 可以不写根路径 package.json "proxy":"http://localhost:4000", 2.使用 ...
- 浅谈JavaScript原型图与内存模型
js原型详解 1.内存模型: 1.原型是js中非常特殊一个对象,当一个函数(Person)创建之后,会随之就产生一个原型对象 2. 当通过这个函数的构造函数创建了一个具体的对象(p1)之后,在这个具体 ...
- C 给定路径遍历目录下的所有文件
在此之前需要了解 WIN32_FIND_DATA的结构 以及 FindFirstFile. FindNextFile原型以及用法注意事项传送门如下 https://msdn.microsoft.co ...
- python 常用技巧 — 字典 (dictionary)
目录: 1. python 相加字典所有的键值 (python sum all values in dictionary) 2. python 两个列表分别组成字典的键和值 (python two l ...
- WGCNA构建基因共表达网络详细教程
这篇文章更多的是对于混乱的中文资源的梳理,并补充了一些没有提到的重要参数,希望大家不会踩坑. 1. 简介 1.1 背景 WGCNA(weighted gene co-expression networ ...
- UNP学习第四章tcp
一.TCP简单流程图 因为对于server我已经写过一篇笔记了:http://www.cnblogs.com/ch122633/p/8315883.html 所以我想再补充一些对于client的部分的 ...