题目描述

You ye Jiu yuan is the daughter of the Great GOD Emancipator.  And when she becomes an adult, she will be queen of Tusikur, so she wanted to travel the world while she was still young. In a country, she found a small pub called Whitehouse. Just as she was about to go in for a drink, the boss Carola appeared. And ask her to solve this problem or she will not be allowed to enter the pub. The problem description is as follows:
There is a tree with n nodes, each node i contains weight a[i], the initial value of a[i] is 0.  The root number of the tree is 1. Now you need to do the following operations:
1) Multiply all weight on the path from u to v by x
2) For all weight on the path from u to v, increasing x to them
3) For all weight on the path from u to v, change them to the bitwise NOT of them
4) Ask the sum of the weight on the path from u to v
The answer modulo 2^64.

Jiu Yuan is a clever girl, but she was not good at algorithm, so she hopes that you can help her solve this problem. Ding~~~

The bitwise NOT is a unary operation that performs logical negation on each bit, forming the ones' complement of the given binary value. Bits that are 0 become 1, and those that are 1 become 0. For example:

NOT 0111 (decimal 7) = 1000 (decimal 8)
NOT 10101011 = 01010100

输入

The input contains multiple groups of data.
For each group of data, the first line contains a number of n, and the number of nodes.
The second line contains (n - 1) integers bi, which means that the father node of node (i +1) is bi.
The third line contains one integer m, which means the number of operations,
The next m lines contain the following four operations:
At first, we input one integer opt
1) If opt is 1, then input 3 integers, u, v, x, which means multiply all weight on the path from u to v by x
2) If opt is 2, then input 3 integers, u, v, x, which means for all weight on the path from u to v, increasing x to them
3) If opt is 3, then input 2 integers, u, v, which means for all weight on the path from u to v, change them to the bitwise NOT of them
4) If opt is 4, then input 2 integers, u, v, and ask the sum of the weights on the path from u to v

1 ≤ n, m, u, v ≤ 10^5
1 ≤ x < 2^64

输出

For each operation 4, output the answer.

样例输入

7
1 1 1 2 2 4
5
2 5 6 1
1 1 6 2
4 5 6
3 5 2
4 2 2
2
1
4
3 1 2
4 1 2
3 1 1
4 1 1

样例输出

5
18446744073709551613
18446744073709551614
0
题意
给一棵n个节点的有根树,每个节点有权值,初始是0,m次操作
u v x:给u v路径上的点权值*x
u v x:给u v路径上的点权值+x
u v:给u v路径上的点权值取反
u v:询问u v路径上的权值和,对2^64取模 树链剖分:https://wenku.baidu.com/view/a088de01eff9aef8941e06c3.html 然后如果没有取反操作,线段树维护和sum,加法标记add和乘法标记mul即可
对于取反操作,因为是对2^64取模的,即x+(!x)=^-,所以x=(^-)-x,因此取反就变成乘法和加法了:!x=(-)*x+(-) (-1对于2^64取模后是(^-))
#include <bits/stdc++.h>
#define ull unsigned long long
using namespace std;
const int N=1e5+;
int n,m,tot,cnt;
int fa[N],last[N];
int son[N],deep[N],dfn[N],num[N],top[N];//重儿子 深度 dfs序 子树规模 所在重链的顶端节点
ull sum[N*],add[N*],mul[N*];
struct orz{
int v,nex;}e[N];
void init()
{
cnt=;
tot=;
memset(last,,sizeof(last));
memset(son,-,sizeof(son));
}
void Inses(int x,int y)
{
cnt++;
e[cnt].v=y;
e[cnt].nex=last[x];
last[x]=cnt;
}
void dfs1(int x,int d)
{
deep[x]=d;
num[x]=;
for (int i=last[x];i;i=e[i].nex)
{
int v=e[i].v;
dfs1(v,d+);
num[x]+=num[v];
if (son[x]==- || num[v]>num[son[x]]) son[x]=v;
}
}
void dfs2(int x,int sp)
{
top[x]=sp;
dfn[x]=++tot;
if (son[x]==-) return ;
dfs2(son[x],sp);
for (int i=last[x];i;i=e[i].nex)
{
int v=e[i].v;
if (v!=son[x]) dfs2(v,v);
}
}
void PushUp(int s)
{
sum[s]=sum[s<<]+sum[s<<|];
}
void PushDown(int s,int l,int r)
{
if (mul[s]!=)
{
mul[s<<]*=mul[s];
mul[s<<|]*=mul[s];
add[s<<]*=mul[s];
add[s<<|]*=mul[s];
sum[s<<]*=mul[s];
sum[s<<|]*=mul[s];
mul[s]=;
} if (add[s])
{
add[s<<]+=add[s];
add[s<<|]+=add[s];
int mid=(l+r)>>;
sum[s<<]+=(ull)(mid-l+)*add[s];
sum[s<<|]+=(ull)(r-mid)*add[s];
add[s]=;
}
} void build(int s,int l,int r)
{
sum[s]=add[s]=;
mul[s]=;
if (l==r) return ;
int m=(l+r)>>;
build(s<<,l,m); build(s<<|,m+,r);
PushUp(s);
}
void update(int s,int l,int r,int L,int R,ull val,int op)
{
//printf("s=%d,l=%d,r=%d,L=%d,R=%d\n",s,l,r,L,R);
if (L<=l&&r<=R)
{
if (l!=r) PushDown(s,l,r);
if (op==)
{
mul[s]*=val;
add[s]*=val;
sum[s]*=val;
}
else if (op==)
{
add[s]+=val;
sum[s]+=(ull)(r-l+)*val;
}
else
{
mul[s]*=val;
add[s]*=val;
add[s]+=val;
sum[s]=(ull)(r-l+)*val-sum[s];
}
return;
}
PushDown(s,l,r);
int mid=(l+r)>>;
if (L<=mid) update(s<<,l,mid,L,R,val,op);
if (R>mid) update(s<<|,mid+,r,L,R,val,op);
PushUp(s);
}
ull query(int s,int l,int r,int L,int R)
{
if (L<=l&&r<=R) return sum[s];
PushDown(s,l,r);
int mid=(l+r)>>;
ull ans=;
if (L<=mid) ans+=query(s<<,l,mid,L,R);
if (R>mid) ans+=query(s<<|,mid+,r,L,R);
PushUp(s);
return ans;
}
void solve(int op,int x, int y,ull val)
{
if (op==) val=-;
if (op<=)
{
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x, y);
update(,,n,dfn[top[x]],dfn[x],val,op);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
update(,,n,dfn[x],dfn[y],val,op);
}
else
{
ull ans=;
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x, y);
ans+=query(,,n,dfn[top[x]],dfn[x]);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
ans+=query(,,n,dfn[x],dfn[y]);
printf("%llu\n",ans);
}
} int main()
{
while (scanf("%d",&n)!=EOF)
{
init();
for (int i=;i<=n;i++)
{
scanf("%d",&fa[i]);
Inses(fa[i],i);
}
dfs1(,);
dfs2(,);
build(,,n);
scanf("%d",&m);
int op,u,v; ull x;
while (m--)
{
scanf("%d",&op);
if (op== || op==) scanf("%d%d%llu",&u,&v,&x);
else scanf("%d%d",&u,&v);
solve(op,u,v,x);
}
}
return ;
}
 

2018焦作网络赛-E- Jiu Yuan Wants to Eat的更多相关文章

  1. 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat

    题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...

  2. ACM-ICPC 2018 焦作赛区网络预赛 E Jiu Yuan Wants to Eat (树链剖分+线段树)

    题目链接:https://nanti.jisuanke.com/t/31714 题意:给你一棵树,初始全为0,有四种操作: 1.u-v乘x    2.u-v加x   3. u-v取反  4.询问u-v ...

  3. ACM-ICPC 2018 焦作赛区网络预赛 E. Jiu Yuan Wants to Eat (树链剖分-线性变换线段树)

    树链剖分若不会的话可自行学习一下. 前两种操作是线性变换,模\(2^{64}\)可将线段树全部用unsigned long long 保存,另其自然溢出. 而取反操作比较不能直接处理,因为其模\(2^ ...

  4. 2018焦作网络赛Mathematical Curse

    题意:开始有个数k,有个数组和几个运算符.遍历数组的过程中花费一个运算符和数组当前元素运算.运算符必须按顺序花费,并且最后要花费完.问得到最大结果. 用maxv[x][y]记录到第x个元素,用完了第y ...

  5. 2018焦作网络赛Give Candies

    一开始忽略了欧拉定理指数部分是modphi(n-1)没有memset,减法后面没加0:

  6. 2018焦作网络赛 - Poor God Water 一道水题的教训

    本题算是签到题,但由于赛中花费了过多的时间去滴吧格,造成了不必要的浪费以及智商掉线,所以有必要记录一下坑点 题意:方格从1到n,每一格mjl可以选择吃鱼/巧克力/鸡腿,求走到n格时满足 1.每三格不可 ...

  7. ACM-ICPC 2018 焦作网络赛

    题目顺序:A F G H I K L 做题链接 A. Magic Mirror 题意:判断 给出的 字符串 是否等于"jessie",需要判断大小写 题解:1.用stl库 tolo ...

  8. 2018 焦作网络赛 K Transport Ship ( 二进制优化 01 背包 )

    题目链接 题意 : 给出若干个物品的数量和单个的重量.问你能不能刚好组成总重 S 分析 : 由于物品过多.想到二进制优化 其实这篇博客就是存个二进制优化的写法 关于二进制优化的详情.百度一下有更多资料 ...

  9. 2018 焦作网络赛 G Give Candies ( 欧拉降幂 )

    题目链接 题意 : 给出 N 个糖果.老师按顺序给 1~N 编号的学生分配糖果.每个学生要么不分.要么最少分一个.且由于是按顺序发放.那么对于某个有分到糖果的编号为 i 的学生.则 1~(i-1) 这 ...

随机推荐

  1. SET SESSION AUTHORIZATION - 为当前会话设置会话用户标识符和当前用户标识符

    SYNOPSIS SET [ SESSION | LOCAL ] SESSION AUTHORIZATION username SET [ SESSION | LOCAL ] SESSION AUTH ...

  2. SSH远程管理服务实战

    目录 SSH远程管理服务实战 1.SSH基本概述 2.SSH相关命令 3.Xshell连接不上虚拟机 4.scp命令 5.sftp命令 6.SSH验证方式 7.SSH场景实践 8.SH安全优化 9.交 ...

  3. 查看linux 用户登录信息及ip

    查看可疑IP登陆 last -f  /var/log/wtmp cat  /var/log/secure  寻找可疑ip登陆次数及信息 who  查看当前登陆用户 -h  忽略头文件信息 -u 显示结 ...

  4. 查看java进程内存简单示例

    分析工具 1.jps 显示指定系统内的所有JVM进程 2.jstat 收集JVM各方面的运行数据 3.jinfo  显示JVM配置信息 4.jmap  堆快照 5.jhat  分析headdump文件 ...

  5. nginx支持webSocket ws请求

    服务端webSocket的java配置文件: @Override public void registerStompEndpoints(StompEndpointRegistry registry) ...

  6. JMS Activemq实战例子demo

    上一篇已经讲了JMS的基本概念,这一篇来上手练一练,如果对JMS基本概念还不熟悉,欢迎参靠JMS基本概. 这篇文章所使用的代码已经不是我刚入手时的代码,已经经过我重构过的代码,便于理解,并且加了很多中 ...

  7. hdu 1402 A * B Problem Plus (FFT模板)

    A * B Problem Plus Problem Description Calculate A * B. Input Each line will contain two integers A ...

  8. js控制ios端的input/textarea元素失去焦点时隐藏键盘

    同事在测试产品时发现这样一个:“某些页面击完input框,在点空白处时,iOS设备的键盘不能隐藏并且焦点也不会失去” 带着这个问题我进行了测试,发现在安卓的设备上并没有这种问题出现. 于是写js进行测 ...

  9. Hadoop2.7.3+Hbase-1.2.6+spark2.1.2完全分布式安装部署

    https://www.cnblogs.com/lzxlfly/p/7221890.html 总的下载地址:      http://mirror.bit.edu.cn/apache/ hadoop下 ...

  10. 当前系统的CPU和内存的空闲百分比

    设想我们有一个php页面A比较耗资源,因此在每次执行页面A中的代码前需要检测一下系统目前CPU和内存的空闲百分比.我们可以利用下面几个函数来解决这个问题 1 2 3 4 5 6 7 8 9 10 11 ...