UVA - 11806 Cheerleaders (容斥原理)
题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法。
分析:
1、集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放。
则这四行必须放=随便放C[N * M][K] - 至少有一行没放,即ABCD=随便放-A的补集 ∪ B的补集 ∪ C的补集 ∪ D的补集。
2、A的补集 ∪ B的补集 ∪ C的补集 ∪ D的补集,可用容斥原理计算,二进制枚举即可。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-9;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1000007;
const double pi = acos(-1.0);
const int MAXN = 400 + 10;
const int MAXT = 1000 + 10;
using namespace std;
int C[MAXN][MAXN];
void init(){
for(int i = 0; i < MAXN; ++i){
C[i][0] = C[i][i] = 1;
for(int j = 1; j < i; ++j){
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
}
}
}
int main(){
int T;
scanf("%d", &T);
int kase = 0;
init();
while(T--){
int N, M, K;
scanf("%d%d%d", &N, &M, &K);
printf("Case %d: ", ++kase);
if(K > N * M){
printf("0\n");
continue;
}
int n = 4;
int ans = C[N * M][K];
for(int i = 1; i < (1 << n); ++i){
int cnt = 0, tmpn = N, tmpm = M;
for(int j = 0; j < n; ++j){
if(i & (1 << j)){
++cnt;
if(j & 1) --tmpm;
else --tmpn;
}
}
if(cnt & 1){
ans = (ans - C[tmpm * tmpn][K] + MOD) % MOD;
}
else{
(ans += C[tmpm * tmpn][K]) %= MOD;
}
}
printf("%d\n", ans);
}
return 0;
}
UVA - 11806 Cheerleaders (容斥原理)的更多相关文章
- UVA 11806 Cheerleaders (容斥原理)
题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- uva 11806 Cheerleaders
// uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...
- UVa 11806 Cheerleaders (容斥原理+二进制表示状态)
In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...
- UVA 11806 Cheerleaders (组合+容斥原理)
自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...
- UVA 11806 Cheerleaders (容斥原理
1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...
- UVa 11806 Cheerleaders (数论容斥原理)
题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...
- 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders
http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...
- UVa 11806 - Cheerleaders (组合计数+容斥原理)
<训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...
随机推荐
- SpringBoot之Feign调用方式比较
一:事发原因 两个东家都使用SpringCloud,巴拉巴拉用上了Spring全家桶,从eureka到ribbon,从ribbon到feign,从feign到hystrix,然后在使用feign的时候 ...
- C# 篇基础知识8——正则表达式
正则表达式(Regular Expression)也叫匹配模式(Pattern),用来检验字符串是否满足特定规则,或从字符串中捕获满足特定规则的子串.正则表达式的命名空间是System.Text.Re ...
- 【Unity】稍微说一下关于各种坐标的转换。比如WorldToScreenPoint
之前写了一篇关于在物体头顶上显示名字的随笔. 估计难懂的点就在各种坐标的转换. 这里详细(就我这水平,怎么可能详细~~~)解说一下.额............. 用另一种方式举个栗子吧. 还是实现在物 ...
- 实验吧-杂项-64格(64进制--base64索引)
下载gif,Winhex打开发现文件头缺失,加上文件头GIF89得到正常图片,用帧分解工具把每一帧分解. 图片主要是一个8×8的方格,好像没什么线索,把每一帧图片上小黄人的占格的位置数出: 17 54 ...
- ssm框架前后端数据交互完整示例
1.sprinMvc控制层 package com.dengfeng.house.controller; import java.text.ParseException; import java.ut ...
- 从ofo到乐视,变卖资产好过冬靠谱吗?
今年年底,有很多人"被迫"离职.他们为了应对生活压力和找工作的不确定性,尝试在二手平台上卖出自己的奢侈品或心爱之物,以期度过潜在的难关.而对于很多企业来说,这个冬天也非常冷.依靠常 ...
- Failed to execute goal org.apache.maven.plugins:maven-surefire-plugin:2.22.1:test (default-test) on project sharp-common: Execution default-test of goal org.apache.maven.plugins:maven-surefire-plugin
[INFO] Scanning for projects... [INFO] [INFO] -----------------------< com.sharp:sharp-common > ...
- ROS常用库(二) Serial库(单片机和上位机串口通讯)
比如我们做了个单片机,在win里面用串口调试助手接收和下发数据,那么在ubuntu里用ros怎么实现?换个说法,怎么实现上位机和下位机的通讯? 首先,用python自带的库就可以实现这个功能. 安装p ...
- vux 中 this.$vux.loading undefined 的问题
时间:2018-04-03 摘要:this.$vux.loading 报 undefined 今天在使用 事件触发 vux 的 loading 组件时,发现无法触发成功,显示 undefined 然 ...
- MySQL 中的数据库名称、数据表名称、字段名称
如何查询Oracle,Sql Server,MySQL 中的数据库名称.数据表名称.字段名称 分类: Database2012-09-24 22:16 7034人阅读 评论(0) 收藏 举报 数据库s ...