import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 1. 生成变量监控信息并定义生成监控信息日志的操作。
SUMMARY_DIR = "F:\\temp\\log"
BATCH_SIZE = 100
TRAIN_STEPS = 3000 def variable_summaries(var, name):
with tf.name_scope('summaries'):
tf.summary.histogram(name, var)
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev/' + name, stddev)
# 2. 生成一层全链接的神经网络。
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
variable_summaries(weights, layer_name + '/weights')
with tf.name_scope('biases'):
biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram(layer_name + '/pre_activations', preactivate)
activations = act(preactivate, name='activation') # 记录神经网络节点输出在经过激活函数之后的分布。
tf.summary.histogram(layer_name + '/activations', activations)
return activations
def main():
mnist = input_data.read_data_sets("F:\\TensorFlowGoogle\\201806-github\\datasets\\MNIST_data", one_hot=True) with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10) hidden1 = nn_layer(x, 784, 500, 'layer1')
y = nn_layer(hidden1, 500, 10, 'layer2', act=tf.identity) with tf.name_scope('cross_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
tf.summary.scalar('cross_entropy', cross_entropy) with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() with tf.Session() as sess: summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
tf.global_variables_initializer().run() for i in range(TRAIN_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
# 运行训练步骤以及所有的日志生成操作,得到这次运行的日志。
summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys})
# 将得到的所有日志写入日志文件,这样TensorBoard程序就可以拿到这次运行所对应的
# 运行信息。
summary_writer.add_summary(summary, i) summary_writer.close()
if __name__ == '__main__':
main()

吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化的更多相关文章

  1. 吴裕雄--天生自然深度学习TensorBoard可视化:命名空间

    # 1. 不同的命名空间. import tensorflow as tf with tf.variable_scope("foo"): a = tf.get_variable(& ...

  2. 吴裕雄--天生自然深度学习TensorBoard可视化:projector_MNIST

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from te ...

  3. 吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄--天生自然深度学习TensorBoard可视化:projector_data_prepare

    import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...

  5. 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告

    实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...

  6. 吴裕雄--天生自然HADOOP学习笔记:基本环境配置

    实验目的 学习安装Java 学习配置环境变量 学习设置免密码登陆的方法 掌握Linux环境下时间同步的配置 实验原理 1.Java的安装 java是大数据的黄金语言,这和java跨平台的特性是密不可分 ...

  7. 吴裕雄--天生自然HADOOP学习笔记:使用yum安装更新软件

    实验目的 了解yum的原理及配置 学习软件的更新与安装 学习源代码编译安装 实验原理 1.编译安装 前面我们讲到了安装软件的方式,因为linux是开放源码的,我们可以直接获得源码,自己编译安装.例如: ...

  8. 吴裕雄--天生自然HADOOP学习笔记:Shell工具使用

    实验目的 学习使用xshell工具连接Linux服务器 在连上的服务器中进入用户目录 熟悉简单的文件操作命令 实验原理 熟悉shell命令是熟悉使用linux环境进行开发的第一步,我们在linux的交 ...

  9. 吴裕雄--天生自然MySQL学习笔记:MySQL UPDATE 更新

    如果需要修改或更新 MySQL 中的数据,我们可以使用 SQL UPDATE 命令来操作. 语法 以下是 UPDATE 命令修改 MySQL 数据表数据的通用 SQL 语法: UPDATE table ...

随机推荐

  1. 控制台连接oracle11g报ORA-12560异常

    oracle11g R2 64bit oracleClient 11.2 32bit PL/SQL Developer 11.0.2 32bit 今天发现了一个奇怪的现象,如图: 后来发现机器上既有s ...

  2. 报错盲注之exp注入(double数值类型溢出原理详解)

    首先感谢原文博主,在此致敬.本文转自:http://www.cnblogs.com/lcamry/articles/5509124.html Exp()为以 e 为底的对数函数:MySQL版本在 5. ...

  3. vue左侧菜单的实现

    后端实现 django视图def menu(request): menu_list = models.Menu.objects.all().values('id', 'menu_name', 'par ...

  4. 模块化es6规范

    阮一峰Module 的语法 1.概述 历史上,JavaScript 一直没有模块(module)体系,无法将一个大程序拆分成互相依赖的小文件,再用简单的方法拼装起来. 在 ES6 之前,社区制定了一些 ...

  5. SpringBoot实现OAuth2认证服务器

    一.最简单认证服务器 1. pom依赖 <dependency> <groupId>org.springframework.boot</groupId> <a ...

  6. POJ 3368:Frequent values

    Frequent values Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14764   Accepted: 5361 ...

  7. 9 —— node —— 读取文件及文件夹的名字

      const fs = require('fs'); fs.readdir('./','utf8',(err,data)=>{ console.log(data) })    

  8. 19 — node 模块化 及 CommonJS规范 — CommonJS 的由来及各组织与 JS 的关系

    ECMAScript  对于不同的环境(运行平台),设计结构,理念,使用方式大相径庭. 1,浏览器 :DOM BOM 2,NodeJS :FS,HTTP 内置模块 :  第三方模块 : 内置模块 3, ...

  9. 关于boostrap的TAB切换 ,如何获取?

    $('a[data-toggle="tab"]').on('shown.bs.tab', function (e) {    // 获取已激活的标签页的名称    var acti ...

  10. 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:Spring JDK动态代理

    JDK 动态代理是通过 JDK 中的 java.lang.reflect.Proxy 类实现的.下面通过具体的案例演示 JDK 动态代理的使用. 1. 创建项目 在 MyEclipse 中创建一个名称 ...