import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 1. 生成变量监控信息并定义生成监控信息日志的操作。
SUMMARY_DIR = "F:\\temp\\log"
BATCH_SIZE = 100
TRAIN_STEPS = 3000 def variable_summaries(var, name):
with tf.name_scope('summaries'):
tf.summary.histogram(name, var)
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev/' + name, stddev)
# 2. 生成一层全链接的神经网络。
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
variable_summaries(weights, layer_name + '/weights')
with tf.name_scope('biases'):
biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram(layer_name + '/pre_activations', preactivate)
activations = act(preactivate, name='activation') # 记录神经网络节点输出在经过激活函数之后的分布。
tf.summary.histogram(layer_name + '/activations', activations)
return activations
def main():
mnist = input_data.read_data_sets("F:\\TensorFlowGoogle\\201806-github\\datasets\\MNIST_data", one_hot=True) with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10) hidden1 = nn_layer(x, 784, 500, 'layer1')
y = nn_layer(hidden1, 500, 10, 'layer2', act=tf.identity) with tf.name_scope('cross_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
tf.summary.scalar('cross_entropy', cross_entropy) with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() with tf.Session() as sess: summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
tf.global_variables_initializer().run() for i in range(TRAIN_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
# 运行训练步骤以及所有的日志生成操作,得到这次运行的日志。
summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys})
# 将得到的所有日志写入日志文件,这样TensorBoard程序就可以拿到这次运行所对应的
# 运行信息。
summary_writer.add_summary(summary, i) summary_writer.close()
if __name__ == '__main__':
main()

吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化的更多相关文章

  1. 吴裕雄--天生自然深度学习TensorBoard可视化:命名空间

    # 1. 不同的命名空间. import tensorflow as tf with tf.variable_scope("foo"): a = tf.get_variable(& ...

  2. 吴裕雄--天生自然深度学习TensorBoard可视化:projector_MNIST

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from te ...

  3. 吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄--天生自然深度学习TensorBoard可视化:projector_data_prepare

    import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...

  5. 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告

    实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...

  6. 吴裕雄--天生自然HADOOP学习笔记:基本环境配置

    实验目的 学习安装Java 学习配置环境变量 学习设置免密码登陆的方法 掌握Linux环境下时间同步的配置 实验原理 1.Java的安装 java是大数据的黄金语言,这和java跨平台的特性是密不可分 ...

  7. 吴裕雄--天生自然HADOOP学习笔记:使用yum安装更新软件

    实验目的 了解yum的原理及配置 学习软件的更新与安装 学习源代码编译安装 实验原理 1.编译安装 前面我们讲到了安装软件的方式,因为linux是开放源码的,我们可以直接获得源码,自己编译安装.例如: ...

  8. 吴裕雄--天生自然HADOOP学习笔记:Shell工具使用

    实验目的 学习使用xshell工具连接Linux服务器 在连上的服务器中进入用户目录 熟悉简单的文件操作命令 实验原理 熟悉shell命令是熟悉使用linux环境进行开发的第一步,我们在linux的交 ...

  9. 吴裕雄--天生自然MySQL学习笔记:MySQL UPDATE 更新

    如果需要修改或更新 MySQL 中的数据,我们可以使用 SQL UPDATE 命令来操作. 语法 以下是 UPDATE 命令修改 MySQL 数据表数据的通用 SQL 语法: UPDATE table ...

随机推荐

  1. 【SQL必知必会笔记(1)】数据库基础、SQL、MySQL8.0.16下数据库、表的创建及数据插入

    文章目录 1.数据库基础 1.1 数据库(database) 1.2 表(table) 1.3 列和数据类型 1.4 行 1.5 主键 2.什么是SQL 3.创建后续练习所需数据库.表(MySQL8. ...

  2. POJ 1330 LCA最近公共祖先 离线tarjan算法

    题意要求一棵树上,两个点的最近公共祖先 即LCA 现学了一下LCA-Tarjan算法,还挺好理解的,这是个离线的算法,先把询问存贮起来,在一遍dfs过程中,找到了对应的询问点,即可输出 原理用了并查集 ...

  3. JAVA中序列化和反序列化中的静态成员问题

    关于这个标题的内容是面试笔试中比较常见的考题,大家跟随我的博客一起来学习下这个过程. ? ? JAVA中的序列化和反序列化主要用于: (1)将对象或者异常等写入文件,通过文件交互传输信息: (2)将对 ...

  4. Redis的安装并配置快捷启动

    Redis 安装 1.下载 wget http://download.redis.io/releases/redis-5.0.5.tar.gz 2.解压 tar -zxvf redis-5.0.5.t ...

  5. Linux每日一练20200221

  6. POJ - 3349 Snowflake Snow Snowflakes (哈希)

    题意:给定n(0 < n ≤ 100000)个雪花,每个雪花有6个花瓣(花瓣具有一定的长度),问是否存在两个相同的雪花.若两个雪花以某个花瓣为起点顺时针或逆时针各花瓣长度依次相同,则认为两花瓣相 ...

  7. 精选干货 在java中创建kafka

    这个详细的教程将帮助你创建一个简单的Kafka生产者,该生产者可将记录发布到Kafka集群. 通过优锐课的java学习架构分享中,在本教程中,我们将创建一个简单的Java示例,该示例创建一个Kafka ...

  8. Sqlserver 增删改查----增

    注意我说的常见查询,可不是简单到一个表得增删改查,做过实际开发得人都知道,在实际开发中,真正牵扯到一个表得增删改查只能说占很小得一部分,大多都是好几个表的关联操作的. 下面我就说一下我在实际开发中经常 ...

  9. Day 10:浅谈正则表达式

    正则表达式 以检验扣扣号是否合法为例引入正则表达式 要求:校验QQ号,要求:必须是5~15位数字,0不能开头. 1.没有正则表达式 public class Demo1 { public static ...

  10. Bootstrap-模态框 modal.js

    参考网址:http://v3.bootcss.com/(能抄不写) 1.大模态框 图片效果图: 代码:(button的属性data-target对应的是具体模态框的class) <!-- Lar ...