C. Journey

补今天早训

这个是一个dp,开始我以为是一个图论,然后就写了一个dij和网络流,然后mle了,不过我觉得如果空间开的足够的,应该也是可以过的。

然后看了题解说是一个dp,这个dp要bfs去转移,为了保证每条边只被转移一次,还要用拓扑排序,

说了这么多,感觉很复杂,其实不是,这个题目还是挺简单的。

如果你知道这个是一个dp+拓扑排序,然后就很简单了。

dp[i][j] 表示从 1走到 i 这个城市,其中一共走了 j 个城市的最短时间。用拓扑排序是保证每一个城市只会去转移一次,这样才不会超时。

#include <cstring>
#include <queue>
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <string>
#include <algorithm>
#include <map>
#include <vector>
#define inf 0x3f3f3f3f
#define inx64 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 5e3 + ;
struct node {
int u, v, w;
node(int u = , int v = , int w = ) :u(u), v(v), w(w) {}
};
vector<node>e;
vector<int>G[maxn];
int dp[maxn][maxn], in[maxn];
void add(int u, int v, int w) {
e.push_back(node(u, v, w));
G[u].push_back(e.size() - );
in[v]++;
}
int p[][];
int n, m, t;
void bfs(int s) {
queue<int>que;
for (int i = ; i <= n; i++) {
if (in[i] == ) que.push(i);
}
while (!que.empty()) {
int u = que.front(); que.pop();
for (int i = ; i < G[u].size(); i++) {
node now = e[G[u][i]];
int v = now.v;
for (int j = ; j <= n; j++) {
if (dp[v][j] > dp[u][j - ] + now.w) {
dp[v][j] = dp[u][j - ] + now.w;
p[v][j] = u;
}
}
in[v]--;
if (in[v] == ) que.push(v);
}
}
} int b[maxn]; int main() {
scanf("%d%d%d", &n, &m, &t);
while (m--) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
memset(dp, inf, sizeof(dp));
dp[][] = ;
bfs();
int ans = ;
for (int i = ; i <= n; i++) if (dp[n][i] <= t) ans = i;
printf("%d\n", ans);
int u = n;
for (int i = ans; i >= ; i--) {
b[i] = u;
u = p[u][i];
}
for (int i = ; i <= ans; i++) printf("%d ", b[i]);
printf("\n");
return ;
}

dp+拓扑排序

C. Journey bfs 拓扑排序+dp的更多相关文章

  1. POJ 3249 拓扑排序+DP

    貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...

  2. BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP

    BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...

  3. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  4. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  5. 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP

    1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 456  Solved: 215[Submit][Stat ...

  6. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  7. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  8. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  9. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

随机推荐

  1. 智能指针 unique_ptr

    unique_ptr 不共享它的指针.它无法复制到其他 unique_ptr,无法通过值传递到函数,也无法用于需要副本的任何标准模板库 (STL) 算法. 1.不能进行复制构造和赋值操作(unique ...

  2. 原生js俄罗斯方块

    效果图 方块定位原理通过16宫格定位坐标,把坐标存到数组中去 [ [[2,0],[2,1],[2,2],[1,2]],//L [[1,1],[2,1],[2,2],[2,3]], //左L [[2,0 ...

  3. stand up meeting 12-3

    因为前后端在参数传递定义不清晰的原因,今天士杰和国庆采用了pair programming的方法,在一台电脑前工作了四十分钟,明确了请求questionpool,请求question,请求rank d ...

  4. stand up meeting 12/2/2015

    part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云  将logic部分提供的delete接口接入,与logic,数据库部分沟通实现了add/delete按钮的复用:解决UI部 ...

  5. JavaScript基础笔记1220

    JavaScript笔记1.JavaScript关键词2.JavaScript标识符 必须以字母,下划线(_)或美元符($)开始. 后续的字符可以是字母.数字.下划线或者美元符 (数字是不允许作为首字 ...

  6. Linux常见提权

    常见的linux提权 内核漏洞提权 查看发行版 cat /etc/issue cat /etc/*-release 查看内核版本 uname -a 查看已经安装的程序 dpkg -l rpm -qa ...

  7. 【题解】POJ3041 Asteroids - 图论 - 二分图匹配

    声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 POJ3041 Asteroids 题目描述 假如你现在正处在一个 \(N*N\ ...

  8. AppBoxFuture: Web在线报表设计与PDF生成

      企业应用需要打印各类单证及报表,为了方便开发此类应用作者在框架内集成了报表引擎,并且实现了基于Canvas的Web在线报表设计及基于PDFJS的报表查看与打印. 一.原理浅析 报表模型:由Xml描 ...

  9. HTML+CSS教程(一)简介及其基本标签的使用方法

    一.前端 HTML(结构):HyPer TEXT Markup LanguageCSS(样式): 样式就是对于结构的一种美化JavaScript(js: 行为/ 提供了用户和界面的交互方式)jQuer ...

  10. tensorflow1.0 构建卷积神经网络

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.envi ...