[APIO2012]派遣 可并堆
Background
在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。
Description
在这个帮派里,有一名忍者被称之为Master。除了Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。
现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,你就不需要支付管理者的薪水。
你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。
写一个程序,给定每一个忍者i的上级Bi,薪水Ci,领导力Li,以及支付给忍者们的薪水总预算M,输出在预算内满足上述要求时顾客满意度的最大值。
Input
第一行包含两个整数N和M,其中N表示忍者的个数,M表示薪水的总预算。
接下来N行描述忍者们的上级、薪水以及领导力。其中的第i行包含三个整数Bi,Ci,Li分别表示第i个忍者的上级,薪水以及领导力。Master满足Bi=0,并且每一个忍者的老板的编号一定小于自己的编号Bi<i。
Output
输出一个数,表示在预算内顾客的满意度的最大值。
Sample Input
5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
Sample Output
6
HINT
1 ≤ N ≤ 100,000 忍者的个数;
1 ≤ M ≤ 1,000,000,000 薪水总预算;
0 ≤ Bi < i 忍者的上级的编号;
1 ≤ Ci ≤ M 忍者的薪水;
1 ≤ Li ≤ 1,000,000,000 忍者的领导力水平。
对于 30%的数据,N ≤ 3000。
#include <stdio.h>
#include <algorithm>
#define N 100010
using namespace std;
int tot,n,m;
long long ans;
long long head[N],next[N],to[N],l[N],r[N],d[N],v[N],sum[N],ss[N],sz[N],L[N],B[N];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
to[tot]=y;
head[x]=tot;
}
int merge(int x,int y)
{
if(!x) return y;
if(!y) return x;
if(v[x]<v[y]) swap(x,y);
r[x]=merge(r[x],y);
if(d[r[x]]>d[l[x]]) swap(l[x],r[x]);
d[x]=d[r[x]]+;
return x;
}
void dfs(int x)
{
ss[x]=x;
sum[x]=v[x];
sz[x]=;
int i;
for(i=head[x];i;i=next[i])
{
dfs(to[i]);
sum[x]+=sum[to[i]];
sz[x]+=sz[to[i]];
ss[x]=merge(ss[x],ss[to[i]]);
}
while(sum[x]>m&&sz[x])
{
sum[x]-=v[ss[x]];
ss[x]=merge(r[ss[x]],l[ss[x]]);
sz[x]--;
}
ans=max(ans,(long long)(L[x]*sz[x]));
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%lld%lld%lld",&B[i],&v[i],&L[i]);
add(B[i],i);
}
dfs();
printf("%lld",ans);
}
[APIO2012]派遣 可并堆的更多相关文章
- [APIO2012]派遣 可并堆(左偏树)
没啥说的,自底向上合并大根堆即可. 一边合并,一边贪心弹堆顶直到堆的总和不大于预算. Code: #include <cstdio> #include <algorithm> ...
- 数据结构,可并堆(左偏树):COGS [APIO2012] 派遣
796. [APIO2012] 派遣 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且 ...
- BZOJ_2809_[Apio2012]dispatching_可并堆
BZOJ_2809_[Apio2012]dispatching_可并堆 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称 ...
- [APIO2012]派遣
[APIO2012]派遣 题目大意: 给定一棵\(n(n\le10^5)\)个结点的有根树,每个点有代价\(c_i\)和权值\(l_i\),要求你选定一个结点\(k\),并在对应的子树中选取一个点集\ ...
- [luogu P1552] [APIO2012]派遣
[luogu P1552] [APIO2012]派遣 题目背景 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 题目描述 在这个帮派里,有一名忍者被称之为Master.除 ...
- 洛谷1552 [APIO2012]派遣
洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...
- [APIO2012]派遣 左偏树
P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...
- BZOJ2809&&LG1552 APIO2012派遣(线段树合并)
BZOJ2809&&LG1552 APIO2012派遣(线段树合并) 题面 自己找去 HINT 简化一题面就是让你从每个点的子树中以\(<=m\)的代价选取尽可能多的点,然后乘上 ...
- 2018.07.31洛谷P1552 [APIO2012]派遣(可并堆)
传送门 貌似是个可并堆的模板题,笔者懒得写左偏堆了,直接随机堆水过.实际上这题就是维护一个可合并的大根堆一直从叶子合并到根,如果堆中所有数的和超过了上限就一直弹直到所有数的和不超过上限为止,最后对于当 ...
随机推荐
- 二 sql语句,常用字段数据类型
MySQL中常用DDL命令 database definition language 与 DML命令 : database definition language 操作数据库: 创建数据库 : ...
- 组态DP主站与标准从站的步骤
分为以下几个部分 第一:组态DP主站与标准从站 分为以下几个步骤 步骤1: 将标准从站ET200 ,ET200在硬件组态软件界面的最右边的PROFIBUS-DP界面里面, PROFIBUS-DP里面是 ...
- 总结了一下 Vue.nextTick() 的原理和用途
对于 Vue.nextTick 方法,自己有些疑惑.在查询了各种资料后,总结了一下其原理和用途,如有错误,请不吝赐教. 概览 官方文档说明: 用法: 在下次 DOM 更新循环结束之后执行延迟回调.在修 ...
- CodeForces - 869B The Eternal Immortality
题意:已知a,b,求的最后一位. 分析: 1.若b-a>=5,则尾数一定为0,因为连续5个数的尾数要么同时包括一个5和一个偶数,要么包括一个0. 2.若b-a<5,直接暴力求即可. #in ...
- 用 k8s 运行一次性任务【转】
容器按照持续运行的时间可分为两类:服务类容器和工作类容器. 服务类容器通常持续提供服务,需要一直运行,比如 http server,daemon 等.工作类容器则是一次性任务,比如批处理程序,完成后容 ...
- Linux-kernel-timeline
Linux kernel Protocol Location HTTP https://www.kernel.org/pub/ GIT https://git.kernel.org/ RSYNC rs ...
- python多进程编程中常常能用到的几种方法
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU资源,在python中大部分情况需要使用多进程.python提供了非常好用的多进程包Multiprocessing,只需要定义 ...
- Java基础学习总结(二)
Java语言的特点: Java语言是简单的 Java语言是面向对象的 Java语言是跨平台(操作系统)的(即一次编写,到处运行) Java是高性能的 运行Java程序要安装和配置JDK jdk是什么? ...
- SQLserver 存储过程生成任意进制/顺序流水号
ALTER PROCEDURE [dbo].[TentoSerial] @num int, @ret nvarchar(10) output AS declare @StringXL nvarc ...
- jQuery事件 - toggle() 方法
1.切换元素的显示与隐藏状态 实例 切换 <p> 元素的显示与隐藏状态: $(".btn1").click(function(){ $("p").h ...