概率图模型(PGM,Probabilistic Graphical Model)
PGM是现代信号处理(尤其是机器学习)的重要内容。
PGM通过图的方式,将多个随机变量之前的关系通过简洁的方式表现出来。因此PGM包括图论和概率论的相关内容。
PGM理论研究并解决三个问题:
1)表示(如何通过图来刻画多个随机变量之间的关系)(注:这个是PGM的基础)
2)学习(如何通过已知数据来确定图的参数) (注:机器学习主要研究这个问题)
3)推断(如果根据已知图,来推断出想要的统计结论) (注:消息传递主要研究这个问题)
表示(Representations)
首先,PGM里面主要使用三种类型的图,
a)贝叶斯网络(Bayesian Network),有向图
b)马尔科夫网络(Markov Network)或者叫马尔科夫随机场(MRF,Markov Random Field),无向图
c)因子图(Factor Graph)
三种图有不同的特点和应用场景。
先定义一些图论中的基本概念:
Graph:A graph $\mathcal{G}=(X,E)$ is a tuple consist of a set of vertices $X$ and a set of edges $E$.
Directed Graph:A graph $\mathcal{R}=(X,E)$ is directed if all edges are directed.
Parent and Child: for a directed graph, $ \mathbf{Pa}(X_j) = \{ X_i \mid (X_i \to X_j) \in \mathbf(E) \} $ $ \mathbf{Ch}(X_i) = \{ X_j \mid (X_i \to X_j) \in \mathbf(E) \} $
Neighbor: for a undirected graph, $ \mathbf{Nb}(X_j) = \{ X_i \mid (X_i - X_j) \in \mathbf(E) \} $
Ancestor and Desendant: $ \mathbf{Anc}(X_j) = \{ X_i \mid \text{ exists a directed path from } X_i \text{ to } X_j \} $
$ \mathbf{Desc}(X_i) = \{ X_j \mid \text{ exists a directed path from } X_i \text{ to } X_j \} $
$ \mathbf{NonDesc}(X_i) = \mathbf{X} - X_i - \mathbf{Desc}(X_i) - \mathbf{Pa}(X_i) $
Bayesian Network (BN)
(注:我们经常遇到的dynamic Bayesian network is a Bayesian network unrolled over time (at each time slice, the BN has the same structure).)
- Definition:
对于随机变量 X1,X2,...,XN,如果联合概率分布可以表示为
$P(X_1,...,X_N) = \prod\limits_{i=1}^N P_{X_i}(X_i \mid \mathbf{Pa} (X_i))$
A Bayesian Network consist of a DAG $\mathcal{G}=(X, E)$ and the conresponding conditional probability distribution $P_{X_i}(X_i \mid \mathbf{Pa} (X_i))$.
- Conditional Indepandence Properties
PGM为啥能简化表达大量随机变量之间的关系,就是因为这些随机变量之间存在一些独立特性,而PGM通过图的形式将这些独立特性表达了出来。
Theorem 1
$ X_i \perp \mathbf{NonDesc}(X_i) \mid \mathbf{Pa}(X_i) \; \forall i, $
Markov Network (MN)
- Definition:
对于随机变量 X1,X2,...,XN,如果联合概率分布可以表示为
$P(X_1,...,X_N) = \frac{1}{Z} \prod\limits_{l=1}^L \Psi_{\mathbf{C}_l}(\mathbf{C}_l)$
则,Markov network由对应的 undirected graph $\mathcal{G}=(X,E)$ 和 一系列最大团的势函数 $\Psi_i: \, \mathbf{val}(C_i) \to \mathbb{R}_{+} $ (nonnegative functions) 表示
条件独立性:
Local Markov property
Pairwise Markov property
Global Markov property
Factor Graph (FG)
概率图模型(PGM,Probabilistic Graphical Model)的更多相关文章
- 从概率图模型pgm到rbm
有向图模型:directed acyclic graph DAG 贝叶斯网络 对称的,无向图, UGM: undirected graphic model UGM, 更有名的名称是MRF,mar ...
- 概率图模型PGM——D map, I map, perfect map
若F分布的每个条件独立性质都反映在A图中,则A图被称为F分布的D map. 若A图表现出的所有条件独立性质都在F分布中满足(与F分布不矛盾),则A图被称为F分布的I map. 弱A图既是F分布的D m ...
- AI 概率图模型
概率图模型(Probabilistic Graphical Model) 有向图模型 信念网络 贝叶斯网络 无向模型 马尔科夫随机场 马尔科夫网络
- Stanford概率图模型: 第一讲 有向图-贝叶斯网络
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系 ...
- PGM:概率图模型Graphical Model
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...
- 概率图模型(PGM)综述-by MIT 林达华博士
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...
- 概率图模型(PGM):贝叶斯网(Bayesian network)初探
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...
- 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)
概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...
- 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯
之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...
随机推荐
- mysql学习笔记(三):unsigned理解以及特殊情况
UNSIGNED UNSIGNED属性就是将数字类型无符号化,与C.C++这些程序语言中的unsigned含义相同.例如,INT的类型范围是-2 147 483 648 - 2 147 483 647 ...
- C语言:将形参s所指字符串中所有ASCII码值小于97的字符存入形参t所指字符数组中,
//将形参s所指字符串中所有ASCII码值小于97的字符存入形参t所指字符数组中,形成一个新串,并统计出符合条件的字符个数返回. //关注点:使用*(t+n)的方式可以不改变指针的指向,像数组一样处理 ...
- Ubuntu系统中创建虚拟环境
1.虚拟环境产生的原因:如果在一台电脑上, 想开发多个不同的项目, 需要用到同一个包的不同版本, 如果使用上面的命令, 在同一个目录下安装或者更新, 新版本会覆盖以前的版本, 其它的项目就无法运行了. ...
- reduxDevTool 配置
import { createStore, compose, applyMiddleware } from 'redux' import reducer from './reducer' import ...
- jmeter录制浏览器Https请求
Jmeter录制脚本时,跟http脚本录制主要区别是,https录制需要添加安全证书. 那么在jmeter上如何操作呢?且看下面的操作步骤 一.jmeter的代理服务器及证书配置 1.打开jmeter ...
- 吴裕雄--天生自然TensorFlow2教程:链式法则
import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...
- formValidation单个输入框值改变时校验
$("#tv_form").data("formValidation").updateStatus("pay.vcAmount", &qu ...
- HDU 1035 Robot Motion(dfs + 模拟)
嗯... 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1035 这道题比较简单,但自己一直被卡,原因就是在读入mp这张字符图的时候用了scanf被卡. ...
- vue.js ②
1.Vue实例的生命周期钩子 每个 Vue 实例在被创建时都要经过一系列的初始化过程——例如,需要设置数据监听.编译模板.将实例挂载到 DOM 并在数据变化时更新 DOM 等.同时在这个过程中也会运行 ...
- 语言国际化:中文ASC码互转
https://javawind.net/tools/native2ascii.jsp 1.首先找到了上面的链接,也就是下图,输入中文就可立即得出ASCII码 2.看到上图第一条,找到了JDK/bin ...