tensorflow真是方便,看来深度学习需要怎么使用框架、如何建模~

 '''
softmax classifier for mnist created on 2019.9.28
author: vince
'''
import math
import logging
import numpy
import random
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
from sklearn.metrics import accuracy_score def main():
logging.basicConfig(level = logging.INFO,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt = '%a, %d %b %Y %H:%M:%S'); logging.info("trainning begin."); mnist = read_data_sets('../data/MNIST',one_hot=True) # MNIST_data指的是存放数据的文件夹路径,one_hot=True 为采用one_hot的编码方式编码标签 x = tf.placeholder(tf.float32, [None, 784]);
w = tf.Variable(tf.zeros([784, 10]));
b = tf.Variable(tf.zeros([10]));
y = tf.matmul(x, w) + b; y_ = tf.placeholder(tf.float32, [None, 10]); cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y, labels = y_));
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy); sess = tf.InteractiveSession();
tf.global_variables_initializer().run();
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100);
sess.run(train_step, feed_dict = {x : batch_xs, y_ : batch_ys}); logging.info("trainning end.");
logging.info("testing begin."); correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1));
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
print(sess.run(accuracy, feed_dict = {x : mnist.test.images, y_:mnist.test.labels})); logging.info("testing end."); if __name__ == "__main__":
main();

使用tensorflow的softmax进行mnist识别的更多相关文章

  1. 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

    TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...

  2. 使用tensorflow实现cnn进行mnist识别

    第一个CNN代码,暂时对于CNN的BP还不熟悉.但是通过这个代码对于tensorflow的运行机制有了初步的理解 ''' softmax classifier for mnist created on ...

  3. TensorFlow 入门之手写识别(MNIST) softmax算法

    TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  4. TensorFlow 入门之手写识别(MNIST) softmax算法 二

    TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  5. TensorFlow 之 手写数字识别MNIST

    官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...

  6. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  7. Tensorflow编程基础之Mnist手写识别实验+关于cross_entropy的理解

    好久没有静下心来写点东西了,最近好像又回到了高中时候的状态,休息不好,无法全心学习,恶性循环,现在终于调整的好一点了,听着纯音乐突然非常伤感,那些曾经快乐的大学时光啊,突然又慢慢的一下子出现在了眼前, ...

  8. TensorFlow 入门之手写识别(MNIST) 数据处理 一

    TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备 ...

  9. TensorFlow实现Softmax Regression识别手写数字

    本章已机器学习领域的Hello World任务----MNIST手写识别做为TensorFlow的开始.MNIST是一个非常简单的机器视觉数据集,是由几万张28像素*28像素的手写数字组成,这些图片只 ...

随机推荐

  1. Zabbix自动发现并监控磁盘IO、报警

    本文转载自: https://www.93bok.com 引言 Zabbix并没有提供模板来监控磁盘的IO性能,所以我们需要自己来创建一个,由于一台服务器中磁盘众多,如果只有一两台可以手动添加,但服务 ...

  2. JUC常用同步工具类——CountDownLatch,CyclicBarrier,Semaphore

    在 JUC 下包含了一些常用的同步工具类,今天就来详细介绍一下,CountDownLatch,CyclicBarrier,Semaphore 的使用方法以及它们之间的区别. 一.CountDownLa ...

  3. 前端每日实战:39# 视频演示如何用纯 CSS 创作一个表达怀念童年心情的条纹彩虹心特效

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QxbmxJ 可交互视频教程 此视频 ...

  4. SIP 协议详解

    SIP 协议详解 2013年参与过一个"视频通讯的App"项目,使用Sip协议通信.当时通信协议这块不是自己负责,加上时间紧.任务重等方面的原因,一直未对Sip协议进行过深入的了解 ...

  5. PC端如何下载B站里面的视频?

    此随笔只是记录一下:   PC端下载B站的视频,在blibli前面加上一个i 然后在视频上鼠标右键,视频另存为+路径即可 PS:网上其他的方法,比如在blibli前面加上kan,后面加上jj等,这些方 ...

  6. koa进阶史(二)

    之前想着放弃CAS的验证吧,但是又去请教了一个大牛,了解到sf公司的CAS验证校验的参数不是sessionId而是另外两个,后登陆sit环境偷了两个参数后,后台接口成功返回200.然后node层也就能 ...

  7. sf-git机制

    为什么要专门写一篇关于sf科技公司的GIT管理机制呢?因为本周经历了两天的学习和考试,刚开始没在意,因为之前公司也用的GIT,所以没怎么看视频,就看了文档,练习考试时候才发现并非以前的那种git流程, ...

  8. [JS]使用JavaScript实现简易俄罗斯方块

    [JS]使用JavaScript实现简易俄罗斯方块 首先,大家可以点击此处来预览一下游戏效果,随后将会以此为模板讲解如何使用JavaScript实现这样一个简易的俄罗斯方块项目(以下简称"该 ...

  9. 解决mongo单文档超过16M

    mongodb导入大文件的数据时,导入一小部分后,提示lost connect,失去连接.mongo文件有6.3G,网上查了一下,原来Mongo对单次处理好像有大小限制(16m),所以大文件会出问题, ...

  10. 如何快速高效率地学习Go语言

    要想快速高效率地掌握Go语言,关键是要通过不断写代码去训练,熟能生巧.方法是没问题的,但具体的路径呢?就像开车,能不能给个导航?我希望这篇文章能起到一个导航的作用,这里提供的路径,应该对很多人都适合. ...