Problem Description

Gabiluso is one of the greatest spies in his country. Now he’s trying to complete an “impossible” mission ----- to make it slow for the army of City Colugu to reach the airport. City Colugu has n bus stations and m roads. Each road connects two bus stations directly, and all roads are one way streets. In order to keep the air clean, the government bans all military vehicles. So the army must take buses to go to the airport. There may be more than one road between two bus stations. If a bus station is destroyed, all roads connecting that station will become no use. What’s Gabiluso needs to do is destroying some bus stations to make the army can’t get to the airport in k minutes. It takes exactly one minute for a bus to pass any road. All bus stations are numbered from 1 to n. The No.1 bus station is in the barrack and the No. n station is in the airport. The army always set out from the No. 1 station.

No.1 station and No. n station can’t be destroyed because of the heavy guard. Of course there is no road from No.1 station to No. n station.

Please help Gabiluso to calculate the minimum number of bus stations he must destroy to complete his mission.
 
Input
There are several test cases. Input ends with three zeros.

For each test case:

The first line contains 3 integers, n, m and k. (0< n <=50, 0< m<=4000, 0 < k < 1000)

Then m lines follows. Each line contains 2 integers, s and f, indicating that there is a road from station No. s to station No. f.
 
Output
For each test case, output the minimum number of stations Gabiluso must destroy.
 
Sample Input

 
5 7 3
1 3
3 4
4 5
1 2
2 5
1 4
4 5
0 0 0
 
Sample Output
2
 
我么你先考虑,最大流,如果一个图中让你删掉N个点使得源点不能到达汇点, 这里设置边的流量为1,然后一边最大流即可。
然后我们要考虑每条路只能走一遍,所以不能直接连中间的点,要限流建图,将中间的点,一分为2,左边作为起始点,右边作为终止点,流量设置为1,这样就可现之每条边之走一遍(这样想,省略了最小割转化分过程,我一直认为最小割最大流没啥区别),现在有个K的限制,我们怎么办呢?之前我们不是拆点了?那么对于源点到左边的起始点的距离加上起始点到右边终止点的距离再加上终止点到原点的距离小于K不就可以了吗,大于K已经不可能在K时间内到达了,忽略即可!
明了点就是
一个点拆成了 I和I' 如果dis[s][u]+dis[u][v]+dis[v][t]<=K的话,我们就添一条U到V',注意是V一撇。然后最大刘 能赵四谢广坤。
 
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1000+10;
const int maxm=100000+10; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=1;i<=n;++i) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]= d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0, f;
for(int &i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans+=DFS(s,INF);
}
return ans;
}
}DC; struct Edge_dist
{
int from,to,dist;
Edge_dist(){}
Edge_dist(int f,int t,int d):from(f),to(t),dist(d){}
}edges[maxm]; struct HeapNode
{
int d,u;
HeapNode(){}
HeapNode(int d,int u):d(d),u(u){}
bool operator<(const HeapNode& rhs)const
{
return d>rhs.d;
}
}; struct Dijkstra
{
int n,m;
vector<Edge_dist> edges;
vector<int> G[maxn];
bool done[maxn];
int d[maxn]; void init(int n)
{
this->n=n;
edges.clear();
for(int i=1;i<=n;++i) G[i].clear();
} void AddEdge(int from,int to,int dist)
{
edges.push_back(Edge_dist(from,to,dist));
m=edges.size();
G[from].push_back(m-1);
} void dijkstra(int s)
{
priority_queue<HeapNode> Q;
for(int i=1;i<=n;++i) d[i]=INF;
d[s]=0;
memset(done,0,sizeof(done));
Q.push(HeapNode(d[s],s));
while(!Q.empty())
{
HeapNode x=Q.top(); Q.pop();
int u=x.u;
if(done[u]) continue;
done[u]=true;
for(int i=0;i<G[u].size();++i)
{
Edge_dist &e=edges[G[u][i]];
if(d[e.to]>d[u]+e.dist)
{
d[e.to]=d[u]+e.dist;
Q.push(HeapNode(d[e.to],e.to));
}
}
}
}
}DJ1,DJ2; int main()
{
int T; scanf("%d",&T);
while(T--)
{
int n,m,cnt=0;//cnt来保存有效边数
scanf("%d%d",&n,&m);
DJ1.init(n),DJ2.init(n);
while(m--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u!=v)
{
DJ1.AddEdge(u,v,w);
DJ2.AddEdge(v,u,w);
edges[cnt++]=Edge_dist(u,v,w);
}
}
int src,dst,len;
scanf("%d%d",&src,&dst);
DJ1.dijkstra(src),DJ2.dijkstra(dst);
len = DJ1.d[dst];
if(len==INF)//不能到达
{
printf("0\n");
continue;
}
DC.init(n,src,dst);
for(int i=0;i<cnt;i++)
{
int u=edges[i].from,v=edges[i].to,w=edges[i].dist;
if(DJ1.d[u]+DJ2.d[v]+w == len)
DC.AddEdge(u,v,1);
}
printf("%d\n",DC.max_flow());
}
}

图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)的更多相关文章

  1. HDU 2485 Destroying the bus stations(!最大流∩!费用流∩搜索)

    Description Gabiluso is one of the greatest spies in his country. Now he’s trying to complete an “im ...

  2. HDU 2485 Destroying the bus stations(费用流)

    http://acm.hdu.edu.cn/showproblem.php?pid=2485 题意: 现在要从起点1到终点n,途中有多个车站,每经过一个车站为1时间,现在要在k时间内到达终点,问至少要 ...

  3. hdu 2485 Destroying the bus stations 最小费用最大流

    题意: 最少需要几个点才能使得有向图中1->n的距离大于k. 分析: 删除某一点的以后,与它相连的所有边都不存在了,相当于点的容量为1.但是在网络流中我们只能直接限制边的容量.所以需要拆点来完成 ...

  4. HDU 2485 Destroying the bus stations (IDA*+ BFS)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2485 题意:给你n个点,m条相连的边,问你最少去掉几个点使从1到n最小路径>=k,其中不能去掉1, ...

  5. HDU 2485 Destroying the bus stations

    2015 ACM / ICPC 北京站 热身赛 C题 #include<cstdio> #include<cstring> #include<cmath> #inc ...

  6. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  7. 【hdu 4859】海岸线(图论--网络流最小割)

    题意:有一个区域,有'.'的陆地,'D'的深海域,'E'的浅海域.其中浅海域可以填充为陆地.这里的陆地区域不联通,并且整个地图都处在海洋之中.问填充一定浅海域之后所有岛屿的最长的海岸线之和. 解法:最 ...

  8. 【LA 3487】Duopoly(图论--网络流最小割 经典题)

    题意:C公司有一些资源,每种只有1个,有A.B两个公司分别对其中一些资源进行分组竞标,每组竞标对一些资源出一个总价.问C公司的最大收益. 解法:最小割.将A公司的竞标与源点相连,B公司的与汇点相连,边 ...

  9. 【uva 1515】Pool construction(图论--网络流最小割 模型题)

    题意:有一个水塘,要求把它用围栏围起来,每个费用为b.其中,(#)代表草,(.)代表洞,把一个草变成洞需要费用d, 把一个洞变成草需要费用f.请输出合法方案中的最小费用. 解法:(不好理解...... ...

随机推荐

  1. MTK Android Android数据保存到系统数据库

    如果有留意Android中系统设置Settings里面的源码,你会发现代码中频繁用到了Settings.System操作,该类通过键值对的形式,将一些特定的值以全局的模式保存到Setting的数据库中 ...

  2. lr具体使用步骤概述

    lr具体使用 1 无工具情况下的性能测试 2性能测试工具LoadRunner的工作原理 3 VuGen应用介绍 4 协议的类型及选择方法 5 脚本的创建过程 6 脚本的参数化 7 调试技术 8 Con ...

  3. leetcode Perform String Shifts

    Perform String Shifts You are given a string s containing lowercase English letters, and a matrix sh ...

  4. Github上面拉取别人提交的PR

    在github上面协同开发,避免不了拉取别的同学的PR,那么如何拉取呢? 1.首先我们看下upstream liz@liz-PC:~/jimeng/handle-api$ git remote -v ...

  5. Linux中使用netstat命令的基本操作,排查端口号的占用情况

    Linux中netstat命令详解 Netstat是控制台命令,是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表.实际的网络连接以及每一个网络接口设备的状态信息.Netstat用于显示与I ...

  6. std::string 字符串分割

    #include <iostream> #include <string> #include <vector> std::vector<std::string ...

  7. std::forward和std::move

    std::forward完美转发 保证参数原来的属性(用在template的参数是引用的时候):左值引用在被转发之后仍然保持左值属性,右值引用在被转发之后依然保持右值属性 void show(int& ...

  8. 【Java】步入OOP 面向对象

    面向对象编程 OOP Object Oriented Programming 面向对象是一种对现实世界理解和抽象的方法,是计算机编程技术发展到一定阶段后的产物. 面向对象是相对于面向过程来讲的,面向对 ...

  9. mysql datetime类型 按格式在页面输出

    mysql datetime类型对应java Date类型   java.util.Date类型会显示时间戳 java.sql.Date 只显示年月日不显示时分秒 只需要重写get方法 就能按格式输出 ...

  10. linux之cat 操作

    1.查看或创建 cat 1.txt #如果目录有这个文件则会打开查看,没有则会创建 2.压缩空白 cat 1.txt 我是第一行 我是第二 行 cat -bs 1.txt # 变成 cat 1.txt ...