Binary Tree和Binary Search Tree
Binary Tree
Definition: at most two children node.
Binary Tree Example:
10 ==root
/ \
13 15 cur
/ \ / \
21 72 12 2
/ \
null null
class TreeNode{
int value;
TreeNode * left;
TreeNode * right;
TreeNode * parent //point to this node's parent node.
}
面试常见题型:
基本知识点1: tree traverse
1. pre-order.
2.in-order.
3.post-order.
关键点:base case通常就是叶子节点下面的空节点。
Balanced binary tree:
对于树的任意一个节点,左子树和右子树的高度差不超过1。
Complete binary tree(完全二叉树)
底层是一个数组,数组内部的数字必须是连续的,不能有空余的内存空间。
Binary Search Tree(二叉查找树)
10
/ \
5 15
/ \ / \
2 7 12 20
注意:对于根节点10,必须整个左子树(左子树上的所有节点)都必须比10小,整个右子树(右子树上的所有节点)必须比10大。
同时binary search tree不允许有重复的node;
Binary tree 往往是最常见的和recursion结合最紧密的面试题目类型。
理由:
1.每层的node所具备的性质,传递的值和下一层的性质往往一致,比较容易定义recursive rule。
2.base case: null pointer under the leaf node.
3.Example1:int getHeight(Node root)
4.Example2:统计tree里面有多少个node。
常见面试题型:
How to get integer value(height) for a problem with size = n? But how?
GetHeight of a binary tree?
public int getHeight(TreeNode root){
if(root == null){
return 0;
}
int left = getHeight(root.left);
int right = getHeight(root.right);
return 1 + Math.max(left,right);
}
Time = O(n);
space = O(n) == O(height);
---------------------------------------------------------------------------------------------------------------------------
Q3:How to determine whether a binary tree is a balanced binary tree?
public boolean isBalanced(TreeNode tree){
if(root == null){
return true;
}
int left = getHeight(root.left);
int right = getHeight(root.right);
if(Math.abs(left - right) > 1){
return false;
}
return isBalanced(root.left) && isBalanced(root.right);
}
时间复杂度分析:
isBalanced(n/2 + n/2)
/ \
getHeight getHeight
(n/4 + n/4) (n/4 + n/4)
因为是一个平衡二叉树所以:层数logn So: Time : O(nlogn)
---------------------------------------------------------------------------------------------------------------------------
Q4:怎么判断一颗二叉树左右两边是不是对称的?
10
5a | 5b
1a 3a | 3b 1b
2a4a 6a8a | 8b6b 4b2b
public boolean isSymmetric(TreeNode noe,TreeNode two){
if(one == null && two == null){
return true;
}
if(one ==null || two == null){
return false;
}
if(one.value == two.value){
return false;
}
return isSymmetric(one.left,two.right) && isSymmetric(one.right,one.left);
}
Time = O(n);
space = O(n) -> O(height) if the tree is balaced -> O(logn)
---------------------------------------------------------------------------------------------------------------------------
Q5:
Binary Tree和Binary Search Tree的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode: Convert sorted list to binary search tree (No. 109)
Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...
- [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值
Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
- [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [LeetCode] Binary Search Tree Iterator 二叉搜索树迭代器
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...
- [LeetCode] Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树
Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...
随机推荐
- centos8 docker安装
官方参考地址:https://docs.docker.com/install/linux/docker-ce/centos/ 下载地址: https://download.docker.com/lin ...
- Copy-On-Write容器(转载)
Copy-On-Write简称COW,是一种用于程序设计中的优化策略.其基本思路是,从一开始大家都在共享同一个内容,当某个人想要修改这个内容的时候,才会真正把内容Copy出去形成一个新的内容然后再改, ...
- 解决xpath中文乱码
利用xpath建标签树以后,虽然提高了元素匹配效率,但是etree会把中文转为ASCII码,所以简单地tostring以后会有乱码. 解决方法: import requests from reques ...
- c#DDOS代码
//在工程属性中设置"允许不安全代码"为true ?using System; using System.Net; using System.Net.Sockets; using ...
- python 连接oracle基础环境配置方法
配置基础: 1.python3.7 2.oracle server 11g 64位 3.PLSQL 64位 4.instantclient-basic-windows.x64-11.2.0.4.0这个 ...
- JavaScript高级特征之面向对象笔记
Javascript面向对象 函数 * Arguments对象: * Arguments对象是数组对象 * Arguments对象的length属性可以获取参数的个数 * 利用Arguments对象模 ...
- JVM,JRE,JDK
JVM (Java Virtual Machine) : Java虚拟机,运行所有Java程序的假象计算机,是Java程序的运行环境,跨平台性由JVM实现. JRE (Java Runtime Env ...
- 微信授权登陆接入第三方App(步骤总结)Android。
这几天开发要用到微信授权的功能,所以就研究了一下.可是微信开放平台接入指南里有几个地方写的不清不楚.在此总结一下,以便需要的人. 很多微信公众平台的应用如果移植到app上的话就需要微信授权登陆了. 目 ...
- ssm 框架 使用ajax异步,实现登陆
只是简单写一下 js.jsp.和controller jsp <%@ page contentType="text/html;charset=UTF-8" language= ...
- [原]HelloWorld
几乎所有程序员的编程都是从写HelloWorld开始的,作为新开的Blog我还是照旧吧. 首先需要肯定的是博客园的管理员做事很高效,我是22:08申请的,结果22:32就审核通过了,理论上讲申请审核时 ...