Day7 - E - Strange Way to Express Integers POJ - 2891
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.
“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”
Since Elina is new to programming, this problem is too difficult for her. Can you help her?
Input
The input contains multiple test cases. Each test cases consists of some lines.
- Line 1: Contains the integer k.
- Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).
Output
Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.
Sample Input
2
8 7
11 9
Sample Output
31
Hint
All integers in the input and the output are non-negative and can be represented by 64-bit integral types.
思路:解同余方程,中国剩余定理,由于每个余数不一定互质,就需要两两合并方程组,给出代码与参考博客:
typedef long long LL;
typedef pair<LL, LL> PLL; const int maxm = 1e5+; LL r[maxm], a[maxm]; void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d) {
if(!b) {
d = a, x = , y = ;
} else {
ex_gcd(b, a%b, y, x, d);
y -= x*(a/b);
}
} LL inv(LL t, LL p) {
LL x, y, d;
ex_gcd(t, p, x, y, d);
return d == ?(x%p+p)%p:-;
} LL gcd(LL a, LL b) {
return b?gcd(b, a%b):a;
} PLL linear(LL r[], LL a[], int n) { // x = r[i] (moda[i])
LL x = , m = ;
for(int i = ; i < n; ++i) {
LL A = m, B = r[i] - x, d = gcd(a[i], A);
if(B % d != ) return PLL(, -);
LL t = B/d * inv(A/d, a[i]/d) % (a[i]/d);
x = x + m*t;
m *= a[i]/d;
}
x = (x % m + m) % m;
return PLL(x, m);
} int main() {
int n;
while(scanf("%d", &n) != EOF) {
for(int i = ; i < n; ++i) {
scanf("%lld%lld", &a[i], &r[i]);
}
PLL ans = linear(r, a, n);
if(ans.second == -) printf("-1\n");
else printf("%lld\n", ans.first);
}
return ;
}
Day7 - E - Strange Way to Express Integers POJ - 2891的更多相关文章
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- poj 2981 Strange Way to Express Integers (中国剩余定理不互质)
http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 13 ...
- poj——2891 Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 16839 ...
- [POJ 2891] Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 10907 ...
- poj Strange Way to Express Integers 中国剩余定理
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 8193 ...
- Strange Way to Express Integers(中国剩余定理+不互质)
Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...
- POJ2891 Strange Way to Express Integers
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...
- Strange Way to Express Integers
I. Strange Way to Express Integers 题目描述 原题来自:POJ 2891 给定 2n2n2n 个正整数 a1,a2,⋯,ana_1,a_2,\cdots ,a_na ...
- POJ2891——Strange Way to Express Integers(模线性方程组)
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...
随机推荐
- 导出EXCEL设置单元格格式
怎么设置导出的EXCEL文件的列格式 如何设置导出的EXCEL文件的列格式在office的EXCEL中我们可以在一个EXCEL文件中,选中一列再点击鼠标右键,选择设置单元格格式,可以将这一列设为文本格 ...
- tensorflow变量的使用(02-2)
import tensorflow as tf x=tf.Variable([1,2]) a=tf.constant([3,3]) sub=tf.subtract(x,a) #增加一个减法op add ...
- heap(堆)
二叉堆: 以前写过二叉堆,但很少使用,快忘了.最近又查了一些关于堆的资料,于是重新熟悉一下这种数据结构. 一个快速又简单的方式建立二叉堆,仅使用简单vector(或者数组也行): #include & ...
- JS垂直落体回弹原理
/* *JS垂直落体回弹原理 */ <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...
- 初识Python和使用Python爬虫
一.python基础知识了解: 1.特点: Python的语言特性: Python是一门具有强类型(即变量类型是强制要求的).动态性.隐式类型(不需要做变量声明).大小写敏感(var和VAR代表 ...
- BigDecimal类用于计算(不会丢失精度)
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 按钮:块级按钮(拉伸至父元素100%的宽度)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 首款中文渗透测试专用Linux系统—MagicBox
1. MagicBox的介绍 首款中文渗透测试专用Linux系统——MagicBox即将问世,中文名称:“魔方系统”,开发代号:Genesis.第一版本发布时间计划为2012年12月5日 这是 ...
- 三、js提交请求加载启动动画、请求完成成功回调、注销加载动画
1.通过Query post方式进行异步请求方法 jQuery.post(url, [data], [callback], [type]) 参数说明: url:发送请求地址 data:待发送 Key ...
- 如何在cmd中连接数据库
数据库连接时遇到的问题 : https://www.cnblogs.com/xyzdw/archive/2011/08/11/2135227.htmlping +ip地址: 查看本机ip:ipconf ...