题意:求菲波那切数列的第n项。

分析:矩阵快速幂。

右边的矩阵为a0 ,a1,,,

然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列。

#include <cstdio>
#include <cstring> using namespace std; typedef long long ll; const int maxn = ;
const int maxm = ; struct Matrix {
int n,m;
int a[maxn][maxm]; void clear() {
n = m = ;
memset(a,,sizeof(a));
} Matrix operator + (const Matrix &b) const {
Matrix tmp;
tmp.n = n;
tmp.m = m; for(int i=;i<n;++i)
for(int j=;j<m;++j)
tmp.a[i][j] = a[i][j] + b.a[i][j]; return tmp;
} Matrix operator - (const Matrix &b) const {
Matrix tmp;
tmp.n = n;
tmp.m = m; for(int i=;i<n;++i)
for(int j=;j<m;++j)
tmp.a[i][j] = a[i][j] - b.a[i][j]; return tmp;
} Matrix operator * (const Matrix & b) const {
Matrix tmp;
tmp.clear();
tmp.n = n;
tmp.m = b.m; for(int i=;i<n;++i)
for(int j=;j<b.m;++j)
for(int k=;k<m;++k)
tmp.a[i][j] +=(a[i][k]*b.a[k][j])%; return tmp;
} Matrix operator ^ (const int& k) const {
Matrix tmp,t = *this; int p = k;
tmp.clear(); tmp.m = tmp.n = this->n; for(int i=;i<n;++i)
tmp.a[i][i] = ; while(p) {
if(p&) tmp = tmp*t;
p>>=;
t = t*t;
}
return tmp;
}
}; int main(int argc, char const *argv[])
{
int n;
while(true) {
scanf("%d",&n);
if(n==-) break;
Matrix f;
f.clear();
f.n = f.m = ;
f.a[][] = ;
f.a[][] = ;
f.a[][] = ;
f.a[][] = ; f = f^n;
Matrix x;
x.clear();
x.n = ;
x.m = ;
x.a[][] = ;
x.a[][] = ;
f = f*x; printf("%d\n", f.a[][]); }
return ;
}

POJ 3070 矩阵快速幂的更多相关文章

  1. POJ 3070 矩阵快速幂解决fib问题

    矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...

  2. 解题报告:poj 3070 - 矩阵快速幂简单应用

    2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...

  3. poj 3070 矩阵快速幂模板

    题意:求fibonacci数列第n项 #include "iostream" #include "vector" #include "cstring& ...

  4. poj 3233 矩阵快速幂

    地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方  结果模m的相加和是多少 Given a n × n matrix A and a positive i ...

  5. poj 3734 矩阵快速幂+YY

    题目原意:N个方块排成一列,每个方块可涂成红.蓝.绿.黄.问红方块和绿方块都是偶数的方案的个数. sol:找规律列递推式+矩阵快速幂 设已经染完了i个方块将要染第i+1个方块. a[i]=1-i方块中 ...

  6. POJ 3233 矩阵快速幂&二分

    题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...

  7. poj 3744 矩阵快速幂+概率dp

    题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...

  8. Blocks(POJ 3734 矩阵快速幂)

    Blocks Input The first line of the input contains an integer T(1≤T≤100), the number of test cases. E ...

  9. Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板

    题目链接  请猛戳~ Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 ...

随机推荐

  1. Jenkins之构建邮件通知之插件Email Extension

    插件: 系统管理-->系统设置--> Extended E-mail Notificati 附上邮件内容: <!DOCTYPE html> <html> <h ...

  2. ABP文档笔记 - 模块系统 及 配置中心

    ABP框架 - 模块系统 ABP框架 - 启动配置 Module System Startup Configuration ABP源码分析三:ABP Module ABP源码分析四:Configura ...

  3. [转]JQuery控制div外点击隐藏,div内点击不会隐藏

    一直弄清楚这个效果如何实现,看了这篇博客的几行代码原来如此简单,就是利用了事件冒泡而已. 比如有个div其id为body,实现在div外点击隐藏,div内点击不隐藏,采用jQuery实现如下: $(& ...

  4. Oracle命令整理

    1 常用命令 常用命令 1 sqlplus  scott/tiger@192.168.47.10:1521/orcl      后面不要加: sqlplus  sys/oracle  as sysdb ...

  5. unet知识点

    https://www.bilibili.com/video/av8483444/?from=search&seid=17755425906400905363 https://www.jian ...

  6. 在 Flask 应用中使用 gevent

    在 Flask 应用中使用 gevent 普通的 flask 应用 通常在用 python 开发 Flask web 应用时,使用 Flask 自带的调试模式能够给开发带来极大便利.Flask 自带的 ...

  7. 【Shell】按行读取文件内容

    方法1:while循环中执行效率最高,最常用的方法. function while_read_LINE_bottm(){ While read LINE do echo $LINE done < ...

  8. 2、按钮:Buttons

    /* --- page1.html ---*/ <ion-content padding class="page1"> <h1>基本用法,实体框</h ...

  9. Java中使用MongoUtils对mongodb数据库进行增、删、查、改

    本文主要介绍在java应用中如何使用MongoUtils工具类对 mongodb进行增.删.查.改操作. 一.配置 1.将 common.jar库引入到项目环境中: (源代码:https://gite ...

  10. struts2====之=======初识struts

    ---恢复内容开始--- 1.什么是web框架? 目前应用得较多的三种服务器瑞页面描写技术就是ASP,JSP和PHP.J S P通过在HTMLJî面 文件中嵌入J a v a脚本代码,从而实现动态网页 ...