题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件

解法:先按无源汇上下界可行流建边,然后添加一条从t到s的容量为inf的边,从超级源到超级汇跑一边最大流,看流量是不是等于新加边的流量和,注意这题有可能输入的数据会有锚段,那么我们需要特判一下是否有矛盾出现

还要注意的一点是:我刚开始是用string+cin读入的字符,但是出现了问题,导致我代码下面的那组数据不能运行,改成scanf却能运行了,为什么单个字符就不能用string读入呢,还是说有其他的格式问题?

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cassert>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pii pair<int,int>
#define C 0.5772156649
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1 using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f; struct edge{
int from,to,Next,c,low;
}e[maxn<<];
int cnt,head[N];
int in[N],out[N];
int dis[N];
int minn[N][N],maxx[N][N];
void add(int u,int v,int c,int low)
{
// cout<<u<<" "<<v<<" "<<c<<" "<<low<<endl;
out[u]+=low;
in[v]+=low;
e[cnt].from=u;
e[cnt].to=v;
e[cnt].c=c;
e[cnt].low=low;
e[cnt].Next=head[u];
head[u]=cnt++;
e[cnt].from=v;
e[cnt].to=u;
e[cnt].c=;
e[cnt].low=low;
e[cnt].Next=head[v];
head[v]=cnt++;
}
void init(int n,int m)
{
cnt=;
memset(head,-,sizeof head);
memset(in,,sizeof in);
memset(out,,sizeof out);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
minn[i][j]=,maxx[i][j]=inf;
}
bool bfs(int s,int t)
{
memset(dis,-,sizeof dis);
dis[s]=;
queue<int>q;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
if(x==t)return ;
for(int i=head[x];~i;i=e[i].Next)
{
int te=e[i].to;
if(dis[te]==-&&e[i].c>)
{
dis[te]=dis[x]+;
q.push(te);
}
}
}
return ;
}
int dfs(int x,int mx,int t)
{
if(x==t)return mx;
int flow=;
for(int i=head[x];~i;i=e[i].Next)
{
int te=e[i].to,f;
if(dis[te]==dis[x]+&&e[i].c>&&(f=dfs(te,min(mx-flow,e[i].c),t)))
{
e[i].c-=f;
e[i^].c+=f;
flow+=f;
}
}
if(!flow)dis[x]=-;
return flow;
}
int maxflow(int s,int t)
{
int ans=,f;
while(bfs(s,t))
{
while((f=dfs(s,inf,t)))ans+=f;
}
return ans;
}
int main()
{
/* ios::sync_with_stdio(false);
cin.tie(0);*/
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
init(n,m);
int s=n+m+,t=n+m+,sum1=,sum2=;
bool can=;
for(int i=;i<=n;i++)
{
int a;
scanf("%d",&a);
sum1+=a;
add(s,i,,a);
if(a<)can=;
}
for(int i=;i<=m;i++)
{
int a;
scanf("%d",&a);
sum2+=a;
add(i+n,t,,a);
if(a<)can=;
}
int res;
scanf("%d",&res);
while(res--)
{
int a,b,c;char str;
scanf("%d %d %c %d",&a,&b,&str,&c);
if(str=='<'&&c<)can=;
if(str=='=')
{
if(a==&&b==)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
minn[i][j]=max(minn[i][j],c);
maxx[i][j]=min(maxx[i][j],c);
}
}
else if(a!=&&b==)
{
for(int j=;j<=m;j++)
{
minn[a][j]=max(minn[a][j],c);
maxx[a][j]=min(maxx[a][j],c);
}
}
else if(a==&&b!=)
{
for(int i=;i<=n;i++)
{
minn[i][b]=max(minn[i][b],c);
maxx[i][b]=min(maxx[i][b],c);
}
}
else if(a!=&&b!=)
{
minn[a][b]=max(minn[a][b],c);
maxx[a][b]=min(maxx[a][b],c);
}
}
else if(str=='>')
{
if(a==&&b==)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
minn[i][j]=max(minn[i][j],c+);
}
}
else if(a!=&&b==)
{
for(int j=;j<=m;j++)
{
minn[a][j]=max(minn[a][j],c+);
}
}
else if(a==&&b!=)
{
for(int i=;i<=n;i++)
{
minn[i][b]=max(minn[i][b],c+);
}
}
else if(a!=&&b!=)
{
minn[a][b]=max(minn[a][b],c+);
}
}
else
{
if(a==&&b==)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
maxx[i][j]=min(maxx[i][j],c-);
}
}
else if(a!=&&b==)
{
for(int j=;j<=m;j++)
{
maxx[a][j]=min(maxx[a][j],c-);
}
}
else if(a==&&b!=)
{
for(int i=;i<=n;i++)
{
maxx[i][b]=min(maxx[i][b],c-);
}
}
else if(a!=&&b!=)
{
maxx[a][b]=min(maxx[a][b],c-);
}
}
}
int be=cnt;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
// cout<<maxx[i][j]<<" "<<minn[i][j]<<endl;
if(maxx[i][j]<minn[i][j])can=;
add(i,j+n,maxx[i][j]-minn[i][j],minn[i][j]);
}
}
int en=cnt-;
add(t,s,inf,);
int ss=n+m+,tt=n+m+,sum3=;
for(int i=;i<=n+m+;i++)
{
if(in[i]>out[i])add(ss,i,in[i]-out[i],),sum3+=in[i]-out[i];
else add(i,tt,out[i]-in[i],);
}
if(sum1!=sum2||!can||sum3!=maxflow(ss,tt))puts("IMPOSSIBLE");
else
{
can=;
for(int i=be;i<=en;i+=)
{
if(e[i^].c+e[i].low<)
{
can=;
break;
}
}
if(can==)puts("IMPOSSIBLE");
else
{
int co=;
for(int i=be;i<=en;i+=)
{
printf("%d",e[i^].c+e[i].low);
co++;
if(co!=m)printf("%c",' ');
else puts(""),co=;
}
}
}
puts("");
}
return ;
}
/********************
179 20
10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500 89500
5
130 0 > 307
0 0 < 366
0 0 > 329
0 0 < 341
0 0 < 324
********************/

poj2396有源汇上下界可行流的更多相关文章

  1. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

  2. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

  3. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  4. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  5. 算法复习——有源汇上下界可行流(bzoj2396)

    题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...

  6. ZOJ1994有源汇上下界可行流

    http://fastvj.rainng.com/contest/236779#problem/G Description: n 行 m 列 给你行和 与 列和 然后有Q个限制,表示特定单元格元素大小 ...

  7. bzoj 2406 矩阵 —— 有源汇上下界可行流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 这题,首先把题目那个式子的绝对值拆成两个限制,就成了网络流的上下界: 有上下界可行流原 ...

  8. bzoj千题计划158:bzoj2406: 矩阵(有源汇上下界可行流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2406 设矩阵C=A-B 最小化 C 一行或一列和的最大值 整体考虑一行或者一列的和 二分最大值 这样 ...

  9. poj2396 Budget&&ZOJ1994 Budget[有源汇上下界可行流]

    Budget Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge We are supposed to make ...

随机推荐

  1. 微信开发模板--easywechat

    链接地址:https://easywechat.org/zh-cn/docs/installation.html

  2. InnoDB的三个关键特性

    一.插入缓冲(insert buffer) 对于非聚集索引的插入和更新,不是每一次直接插入索引页中,而是首先判断插入的非聚集索引页是否在缓冲池中,如果在,则直接插入,否则, 先放入一个插入缓冲区中.好 ...

  3. ReentrantLock VS synchronized

    ReentrantLock 类实现了 Lock ,它拥有与 synchronized 相同的并发性和内存语义,但是添加了类似锁投票.定时锁等候和可中断锁等候的一些特性. 此外,它还提供了在激烈争用情况 ...

  4. 2. 安装 Kerberos

    2.1. 环境配置 安装kerberos前,要确保主机名可以被解析. 主机名 内网IP 角色 Vmw201 172.16.18.201 Master KDC Vmw202 172.16.18.202 ...

  5. ubuntu ping响应慢的解决(转)

    新装ubuntu之后感觉上网老是很慢,ping网站时每次ping指令都需要很久才能有响应,不过网络延迟却正常.后来发现是因为/etc/nsswitch.conf文件中hosts的配置有问题,做如下修改 ...

  6. 标准c内存函数的使用方法

    标准c内存函数 calloc 语法:     #include <stdlib.h>   void *calloc( size_t num, size_t size ); 功能: 函数返回 ...

  7. Eclipse Find/Replace

    1.Eclipse内容助手 选中Regular expressions,使用正则表达式进行匹配.图中出现了小黄灯,Ctrl+Space显示出帮助信息. 2.Wrap search(循环检索)选中后,检 ...

  8. 深度学习3--caffe的安装(only CPU)

    1. 本来按照视频走的,但是在cmake的时候报错,然后参考了这篇文章,稀里糊涂的就好了,总结就是把“视频/本文”说的依赖都安装上,就可以了,先安装opencv,再安装caffe第三方依赖 在安装ca ...

  9. 嵌入式boa服务器移植

    开发板:EDUKIT-III实验箱,S3C2410+LINUX2.4,实验箱随箱光盘提供的Zimage,nor flash启动. 主机:ubnutn10.4LTS,arm-linux-gcc 2.95 ...

  10. jQuery横向图片手风琴

    在线演示 本地下载