Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5

1 2 3 4 5

1 2

1 4

2 3

2 5

3 3

1 2 1

3 5

2 1 2

3 3
Sample Output

6

9

13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

题解:很裸的树剖题了……然而竟然因为写错了线段树调了一个多小时……emmm,如果分块是O(nlogn)的就好了┑( ̄Д  ̄)┍

代码如下:

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
#define hi puts("hi");
using namespace std; struct node
{
long long l,r,lazy,sum;
} tr[];
long long deep[],fa[],size[],son[],id[],top[],w[],c[],cnt=;
vector<int> g[]; void push_up(int root)
{
tr[root].sum=tr[lson].sum+tr[rson].sum;
} void push_down(int root)
{
int mid=(tr[root].l+tr[root].r)>>;
tr[lson].sum+=(mid-tr[root].l+)*tr[root].lazy;
tr[lson].lazy+=tr[root].lazy;
tr[rson].sum+=(tr[root].r-mid)*tr[root].lazy;
tr[rson].lazy+=tr[root].lazy;
tr[root].lazy=;
} void build(int root,int l,int r)
{
if(l==r)
{
tr[root].l=l;
tr[root].r=r;
tr[root].sum=w[l];
return ;
}
tr[root].l=l;
tr[root].r=r;
int mid=(l+r)>>;
build(lson,l,mid);
build(rson,mid+,r);
push_up(root);
} void add(int root,int l,int r,int x)
{
if(l==tr[root].l&&r==tr[root].r)
{
tr[root].lazy+=x;
tr[root].sum+=(tr[root].r-tr[root].l+)*x;
return;
}
int mid=(tr[root].l+tr[root].r)>>;
if(tr[root].lazy) //
{
push_down(root);
}
if(l>mid)
{
add(rson,l,r,x); //!!!
}
else
{
if(r<=mid)
{
add(lson,l,r,x); //!!!
}
else
{
add(lson,l,mid,x);
add(rson,mid+,r,x);
}
}
push_up(root); //
} long long query(int root,int l,int r)
{
if(l==tr[root].l&&tr[root].r==r)
{
return tr[root].sum;
}
int mid=(tr[root].l+tr[root].r)>>;
if(tr[root].lazy)
{
push_down(root); //
}
if(l>mid)
{
return query(rson,l,r); //!!!
}
else
{
if(r<=mid)
{
return query(lson,l,r); //!!!
}
}
return query(lson,l,mid)+query(rson,mid+,r);
} void dfs1(int now,int f,int dep)
{
deep[now]=dep;
fa[now]=f;
size[now]=;
int maxson=-;
for(int i=;i<g[now].size();i++)
{
if(g[now][i]==f)
{
continue;
}
dfs1(g[now][i],now,dep+);
size[now]+=size[g[now][i]]; //
if(size[g[now][i]]>maxson)
{
son[now]=g[now][i];
maxson=size[g[now][i]];
}
}
} void dfs2(int now,int topf)
{
id[now]=++cnt;
w[cnt]=c[now];
top[now]=topf;
if(!son[now])
{
return ;
}
dfs2(son[now],topf);
for(int i=;i<g[now].size();i++)
{
if(g[now][i]==son[now]||g[now][i]==fa[now])
{
continue;
}
dfs2(g[now][i],g[now][i]);
}
} void point_add(int x,int val)
{
add(,id[x],id[x],val);
} void sub_add(int x,int val)
{
add(,id[x],id[x]+size[x]-,val);
} void path_sum(int x,int y)
{
long long ans=;
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]]) //
{
swap(x,y);
}
ans+=query(,id[top[x]],id[x]);
x=fa[top[x]];
}
if(deep[x]>deep[y])
{
swap(x,y);
}
ans+=query(,id[x],id[y]);
printf("%lld\n",ans);
} int main()
{
int n,m,kd,x,a;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%lld",&c[i]);
}
for(int i=;i<=n-;i++)
{
int from,to;
scanf("%d%d",&from,&to);
g[from].push_back(to);
g[to].push_back(from);
}
dfs1(,,);
dfs2(,);
build(,,n);
for(int i=;i<=m;i++)
{
scanf("%d",&kd);
if(kd==)
{
scanf("%d%d",&x,&a);
point_add(x,a);
}
if(kd==)
{
scanf("%d%d",&x,&a);
sub_add(x,a);
}
if(kd==)
{
scanf("%d",&x);
path_sum(,x);
}
}
}

省选一试爆炸了qwq

BZOJ 4034[HAOI2015]树上操作(树链剖分)的更多相关文章

  1. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  2. bzoj 4034: [HAOI2015]树上操作——树链剖分

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  3. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  4. bzoj 4034 [HAOI2015] T2(树链剖分,线段树)

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1536  Solved: 508[Submit][Status] ...

  5. BZOJ 4034 [HAOI2015]T2(树链剖分)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4034 [题目大意] 有一棵点数为 N 的树,以点 1 为根,且树点有边权. 有 M 个 ...

  6. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  7. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  8. P3178 [HAOI2015]树上操作 树链剖分

    这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...

  9. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

随机推荐

  1. nagios(centreon)监控lvs

    客户端配置:让nagios账户有权限查看ipvsadminvim /etc/sudoers[root@SSAVL2318 etc]# visodu /etc/sudoers加入 nagios  ALL ...

  2. ubuntu下安装ros出现“无法下载-package.ros.org中某个包-校验和不符”的解决方法

    新安装的Ubuntu14.04,为了科研马上准备装ros indigo,却困难重重,一步一个坎. 比如说按照ros wiki里面一步一步来,当运行sudoapt-get update 然后出现下列情况 ...

  3. 关于 Mybatis的原生连接池 和 DBCP 连接池

    一 遇到的问题:  项目用的play框架,数据库DB2, 持久化框架是Mybatis, 连接池用的是Mybatis原生的,遇到的问题是:有时候抛出如下异常: play.api.UnexpectedEx ...

  4. linux下dmesg命令详解

    前言:     有时候想查看一下开机启动信息,可以通过这个命令查询. 1,命令格式 功能说明:显示开机信息.  语 法:dmesg [-cn][-s <缓冲区大小>]  补充说明:kern ...

  5. 配置VMware中的Ubuntu能够被其他机器ssh远程

    配置虚拟机Ubuntu能够被其他机器 ssh远程 将虚拟机Ubuntu改成桥接模式 在Ubuntu中安装openssh sudo apt install openssh-server -y sudo ...

  6. 解析Java反射 - invoke方法

    最近工作中涉及到获取同程火车票,大概描述为:将本地获取的发出城市,目的城市及出发时间按固定格式封装,调用接口获取可乘坐座席等级最高的火车票,接口返回数据用包含三层类封装的类接受,接受的类总共为四层,倒 ...

  7. 【bzoj1050】[HAOI2006]旅行comf

    1050: [HAOI2006]旅行comf Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2813  Solved: 1534[Submit][St ...

  8. 2014蓝桥杯B组初赛试题《啤酒和饮料》

    题目描述: 啤酒每罐2.3元,饮料每罐1.9元.小明买了若干啤酒和饮料,一共花了82.3元.     我们还知道他买的啤酒比饮料的数量少,请你计算他买了几罐啤酒.     注意:答案是一个整数.请通过 ...

  9. 面试题:四种Java线程池用法解析 !=!=未看

    1.new Thread的弊端 执行一个异步任务你还只是如下new Thread吗? 1 2 3 4 5 6 7 8 new Thread(new Runnable() {     @Override ...

  10. SQL数据库游标

    这个文档几乎包含了oracle游标使用的方方面面,全部通过了测试 -- 声明游标:CURSOR cursor_name IS select_statement --For 循环游标--(1)定义游标- ...