Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5

1 2 3 4 5

1 2

1 4

2 3

2 5

3 3

1 2 1

3 5

2 1 2

3 3
Sample Output

6

9

13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

题解:很裸的树剖题了……然而竟然因为写错了线段树调了一个多小时……emmm,如果分块是O(nlogn)的就好了┑( ̄Д  ̄)┍

代码如下:

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
#define hi puts("hi");
using namespace std; struct node
{
long long l,r,lazy,sum;
} tr[];
long long deep[],fa[],size[],son[],id[],top[],w[],c[],cnt=;
vector<int> g[]; void push_up(int root)
{
tr[root].sum=tr[lson].sum+tr[rson].sum;
} void push_down(int root)
{
int mid=(tr[root].l+tr[root].r)>>;
tr[lson].sum+=(mid-tr[root].l+)*tr[root].lazy;
tr[lson].lazy+=tr[root].lazy;
tr[rson].sum+=(tr[root].r-mid)*tr[root].lazy;
tr[rson].lazy+=tr[root].lazy;
tr[root].lazy=;
} void build(int root,int l,int r)
{
if(l==r)
{
tr[root].l=l;
tr[root].r=r;
tr[root].sum=w[l];
return ;
}
tr[root].l=l;
tr[root].r=r;
int mid=(l+r)>>;
build(lson,l,mid);
build(rson,mid+,r);
push_up(root);
} void add(int root,int l,int r,int x)
{
if(l==tr[root].l&&r==tr[root].r)
{
tr[root].lazy+=x;
tr[root].sum+=(tr[root].r-tr[root].l+)*x;
return;
}
int mid=(tr[root].l+tr[root].r)>>;
if(tr[root].lazy) //
{
push_down(root);
}
if(l>mid)
{
add(rson,l,r,x); //!!!
}
else
{
if(r<=mid)
{
add(lson,l,r,x); //!!!
}
else
{
add(lson,l,mid,x);
add(rson,mid+,r,x);
}
}
push_up(root); //
} long long query(int root,int l,int r)
{
if(l==tr[root].l&&tr[root].r==r)
{
return tr[root].sum;
}
int mid=(tr[root].l+tr[root].r)>>;
if(tr[root].lazy)
{
push_down(root); //
}
if(l>mid)
{
return query(rson,l,r); //!!!
}
else
{
if(r<=mid)
{
return query(lson,l,r); //!!!
}
}
return query(lson,l,mid)+query(rson,mid+,r);
} void dfs1(int now,int f,int dep)
{
deep[now]=dep;
fa[now]=f;
size[now]=;
int maxson=-;
for(int i=;i<g[now].size();i++)
{
if(g[now][i]==f)
{
continue;
}
dfs1(g[now][i],now,dep+);
size[now]+=size[g[now][i]]; //
if(size[g[now][i]]>maxson)
{
son[now]=g[now][i];
maxson=size[g[now][i]];
}
}
} void dfs2(int now,int topf)
{
id[now]=++cnt;
w[cnt]=c[now];
top[now]=topf;
if(!son[now])
{
return ;
}
dfs2(son[now],topf);
for(int i=;i<g[now].size();i++)
{
if(g[now][i]==son[now]||g[now][i]==fa[now])
{
continue;
}
dfs2(g[now][i],g[now][i]);
}
} void point_add(int x,int val)
{
add(,id[x],id[x],val);
} void sub_add(int x,int val)
{
add(,id[x],id[x]+size[x]-,val);
} void path_sum(int x,int y)
{
long long ans=;
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]]) //
{
swap(x,y);
}
ans+=query(,id[top[x]],id[x]);
x=fa[top[x]];
}
if(deep[x]>deep[y])
{
swap(x,y);
}
ans+=query(,id[x],id[y]);
printf("%lld\n",ans);
} int main()
{
int n,m,kd,x,a;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%lld",&c[i]);
}
for(int i=;i<=n-;i++)
{
int from,to;
scanf("%d%d",&from,&to);
g[from].push_back(to);
g[to].push_back(from);
}
dfs1(,,);
dfs2(,);
build(,,n);
for(int i=;i<=m;i++)
{
scanf("%d",&kd);
if(kd==)
{
scanf("%d%d",&x,&a);
point_add(x,a);
}
if(kd==)
{
scanf("%d%d",&x,&a);
sub_add(x,a);
}
if(kd==)
{
scanf("%d",&x);
path_sum(,x);
}
}
}

省选一试爆炸了qwq

BZOJ 4034[HAOI2015]树上操作(树链剖分)的更多相关文章

  1. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  2. bzoj 4034: [HAOI2015]树上操作——树链剖分

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  3. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  4. bzoj 4034 [HAOI2015] T2(树链剖分,线段树)

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1536  Solved: 508[Submit][Status] ...

  5. BZOJ 4034 [HAOI2015]T2(树链剖分)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4034 [题目大意] 有一棵点数为 N 的树,以点 1 为根,且树点有边权. 有 M 个 ...

  6. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  7. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  8. P3178 [HAOI2015]树上操作 树链剖分

    这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...

  9. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

随机推荐

  1. Nginx安装过程

    1. 首先 ./configure --prefix=/usr/common/nginx --with-http_stub_status_module 报如下错误: 2. 从报的错可以看出缺少pcre ...

  2. Eclipse 中 No java virtual machine was found... 解决方法

    这个链接说的不错,http://www.mafutian.net/123.html,,但是还有一种可能是64位和32位的问题,也就是eclipse32位只能用32位的jdk,eclipse64位的只能 ...

  3. 使用VS2017 编写Linux系统上的Opencv程序

    背景 之前写图像算法的程序都是在window10下使用VS编写,VS这个IDE结合“ImageWatch.vsix“插件,用于调试opencv相关的图像算法程序十分方便.后因项目需要,需将相关程序移植 ...

  4. PTA PAT排名汇总(25 分)

    PAT排名汇总(25 分) 计算机程序设计能力考试(Programming Ability Test,简称PAT)旨在通过统一组织的在线考试及自动评测方法客观地评判考生的算法设计与程序设计实现能力,科 ...

  5. PHP通过引用传递参数

    <?php function add_some_extra(&$string) // 引入变量,使用同一个存储地址 { $string .= 'and something extra.' ...

  6. oracle 11g r2 rac +openfiler 2.99 +centos 6.5+vbox

    继上篇openfiler 2.99安装之后,这一篇讲介绍openfiler的存储配置和oracle 端的服务配置 参考文档:https://www.oracle.com/technetwork/cn/ ...

  7. 优秀设计师必须知道哪些优秀的UI设计原则

    转自:http://www.gamelook.com.cn/2016/01/240359 界面清晰最重要 界面清晰是UI设计的第一步,要想让用户喜欢你设计的UI,首先必须让用户认可它.知道怎么样使用它 ...

  8. oracle分布式事务总结

    基本概念 Local Coordinator:在分布事务中,必须参考其它节点上的数据才能完成自己这部分操作的站点. Global Coordinator:分布事务的发起者,负责协调这个分布事务. Co ...

  9. md5加密小程序

    #-*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" import hashlib m = hashlib.md5() m.updat ...

  10. 01CSS的引入方式

    引入CSS方式(重点掌握) 行内样式 内接样式 外接样式 链接式 导入式 css介绍 现在的互联网前端分三层: HTML:超文本标记语言.从语义的角度描述页面结构. CSS:层叠样式表.从审美的角度负 ...