[bzoj3238][Ahoi2013]差异——后缀自动机
Brief Description

Algorithm Design
下面给出后缀自动机的一个性质:
两个子串的最长公共后缀,位于这两个串对应的状态在parent树上的lca状态上。并且最长公共后缀的长度就是lca状态的len。
证明:对于一个串,他的所有祖先节点都是他的后缀,并且深度越大,长度越长,由此不难说明两个子串的最长公共后缀一定在lca状态上。考察这个lca,他代表的所有子串一定都是两个子串的公共后缀,我们直接取最大的就可以了。
有了这个性质,我们就可以开始乱搞了。
Code
#include <algorithm>
#include <cstdio>
#include <cstring>
#define ll long long
const ll maxn = 500100 << 1;
char s[maxn], str[maxn];
ll head[maxn], f[maxn];
ll ans;
ll n, cnt = 1;
struct edge {
ll to, next;
} e[maxn];
void add_edge(ll u, ll v) {
e[++cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt;
}
struct Suffix_Automaton {
ll fa[maxn], trans[maxn][26], len[maxn], right[maxn];
ll last, root, sz;
bool flag[maxn];
void init() {
memset(flag, 0, sizeof(flag));
sz = 0;
last = root = ++sz;
}
void insert(ll x) {
ll p = last, np = last = ++sz;
len[np] = len[p] + 1;
flag[np] = 1;
right[np] = right[p] + 1;
for (; !trans[p][x]; p = fa[p])
trans[p][x] = np;
if (p == 0)
fa[np] = root;
else {
ll q = trans[p][x];
if (len[q] == len[p] + 1) {
fa[np] = q;
} else {
ll nq = ++sz;
fa[nq] = fa[q];
memcpy(trans[nq], trans[q], sizeof(trans[q]));
len[nq] = len[p] + 1;
fa[q] = fa[np] = nq;
for (; trans[p][x] == q; p = fa[p])
trans[p][x] = nq;
}
}
}
void pre() {
for (ll i = 1; i <= sz; i++) {
if (fa[i])
add_edge(fa[i], i);
}
}
void print() {
for (ll i = 1; i <= sz; i++) {
printf("%3lld ", i);
}
printf("\n");
for (ll i = 1; i <= sz; i++) {
printf("%3lld ", len[i]);
}
printf("\n");
for (ll i = 1; i <= sz; i++)
if (flag[i]) {
printf("%lld:", i);
for (ll j = 1; j <= len[i]; j++)
printf("%c", str[right[i] - (len[i] - j + 1) + 1]);
printf("\n");
}
printf("\n");
}
} sam;
void dfs(ll x) {
ll ct = 0;
f[x] = sam.flag[x] ? 1 : 0;
for (ll i = head[x]; i; i = e[i].next) {
dfs(e[i].to);
ans -= 1ll * 2 * (1ll * f[e[i].to] * ct) * (sam.len[x]);
ct += f[e[i].to];
}
if (f[x] == 1) {
ans -= 1ll * 2 * (1ll * ct) * (sam.len[x]);
}
f[x] += ct;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
scanf("%s", s + 1);
n = strlen(s + 1);
sam.init();
for (ll i = 1; i <= n; i++) {
ans += (n * i) - i * i + ((n * n - i * i + n - i) >> 1);
str[i] = s[n - i + 1];
}
for (ll i = 1; i <= n; i++)
sam.insert(str[i] - 'a');
sam.pre();
// sam.print();
// printf("%lld\n", ans);
dfs(sam.root);
printf("%lld\n", ans);
}
[bzoj3238][Ahoi2013]差异——后缀自动机的更多相关文章
- BZOJ3238: [Ahoi2013]差异(后缀自动机)
题意 题目链接 Sol 前面的可以直接算 然后原串翻转过来,这时候变成了求任意两个前缀的最长公共后缀,显然这个值应该是\(len[lca]\),求出\(siz\)乱搞一下 #include<bi ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [Ahoi2013]差异(后缀自动机)
/* 前面的那一坨是可以O1计算的 后面那个显然后缀数组单调栈比较好写??? 两个后缀的lcp长度相当于他们在后缀树上的lca的深度 那么我们就能够反向用后缀自动机构造出后缀树然后统计每个点作为lca ...
- 洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)
题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的 ...
- BZOJ 3238 [Ahoi2013]差异 ——后缀自动机
后缀自动机的parent树就是反串的后缀树. 所以只需要反向构建出后缀树,就可以乱搞了. #include <cstdio> #include <cstring> #inclu ...
- [AHOI2013]差异 后缀自动机_Parent树
题中要求: $\sum_{1\leqslant i < j \leq n } Len(T_{i}) +Len(T_{j})-2LCP(T_{i},T_{j})$ 公式左边的部分很好求,是一个常量 ...
- BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)
题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...
- BZOJ 3238: [Ahoi2013]差异 后缀自动机 树形dp
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有 ...
随机推荐
- PostgreSQL字段名和表名大小写的问题
创建表的时候,表名和字段名必须全小写,然后查询的时候不管全大写或全小写,或是Camel模式都不会报错.只要名称中有大写字母,或者全大写,查询时就必须保证大小写正确并用双引号包起来,否则就会报“XXX不 ...
- 超强排序JavaScript插件
Sortable:http://rubaxa.github.io/Sortable/
- Linux中java应用程序的部署,使其开机自动启动
初步需求:将在Windows/MyEclipse中开发的java应用程序部署到Linux服务器上,使其运行 针对需求,可以参考下面这些文章,但是这些文章很多东西没有提及到,我自己尝试部署运行 在lin ...
- jmeter更改启动编码设置
项目中碰到这样的问题,在eclipse经过utf-8转码的代码,能正常运行,放到了jmeter里面运行,就是乱码,如下: String s = "乔佳飞"; String ss = ...
- [电子书] 《Android编程兵书》PDF
Android编程兵书 内容简介: 这是一本Android开发书籍,内容讲解详细,例子丰富,能帮助读者举一反三.在<Android编程兵书>中,每一个知识点的描述都非常详细,并且每一个知识 ...
- js学习日记-隐式转换相关的坑及知识
隐式转换比较是js中绕不过去的坎,就算有几年经验的工程师也很有可能对这块知识不够熟悉.就算你知道使用===比较从而避免踩坑,但是团队其它成员不一定知道有这样或那样的坑,有后端语言经验的人常常会形成一个 ...
- Sublime text3最全快捷键清单
[转]https://blog.csdn.net/mrchengzp/article/details/78508509,感谢作者的分享,收录方便查阅 Sublime Text 支持多种编程语言的语 ...
- sqlite sql语句关键字GROUP BY的理解
第一遍看GROUP BY的介绍时,没看懂. SQLite 的 GROUP BY 子句用于与 SELECT 语句一起使用,来对相同的数据进行分组.在 SELECT 语句中,GROUP BY 子句放在 W ...
- DataGridView使用
DataGridView控件概述 DataGridView 控件代码目录(Windows 窗体) 未绑定数据列 定义:可能想要显示并非来自数据源的一列数据,这种列称为未绑定列. 数据格式示例 如何:设 ...
- Linux 项目实用命令
总结一下Linux下常用的命令 nc nc命令,这是Linux一般都带有的,被誉为“瑞士军刀”.windows和Linux都有,可以下载安装对应的平台工具.使用UDP和TCP协议的网络连接去读写数据, ...