题目大意:给$n$,一个游戏,给$a,b$,两个人,每人每次可以把$a$或$b$加一,要求$a^b\leqslant n$,无法操作人输。有$m$次询问,每次给你$a,b$,问先手可否必胜

题解:令$f_{i,j}$表示$a=i,b=j$使得胜负,$f_{i,j}$可由$f_{i+1,j},f_{i,j+1}$推出,但这样会$MLE(b=1)$,发现若$a>\sqrt n$,可以直接奇偶性判断。

卡点:原来写的东西不知道为什么锅,换成题解的方式就过了

C++ Code:

#include <cstdio>
#define maxn 32010
const int sq = 32000;
int n, m;
int exp[maxn];
bool f[maxn][31];
int main() {
scanf("%d%d", &n, &m);
exp[1] = n;
for (int i = 2; i <= sq; i++) {
if (i > n) exp[i] = 0;
else {
long long S = i, j;
for (j = 2; (S *= i) <= n; j++) ;
exp[i] = j - 1;
}
}
f[sq + 1][1] = !(n - sq - 1 & 1);
for (int i = sq; i > 1; i--) {
for (int j = exp[i]; j; j--) {
f[i][j] = !(f[i][j + 1] || f[i + 1][j]);
}
}
while (m --> 0) {
int a, b;
scanf("%d%d", &a, &b);
if (a > sq) puts((n - a & 1) ? "Yes" : "No");
else puts(f[a][b] ? "No" : "Yes");
}
return 0;
}

  

[UOJ #51]【UR #4】元旦三侠的游戏的更多相关文章

  1. 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp

    题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...

  2. 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)

    [UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...

  3. [UOJ Round#4 A] [#51] 元旦三侠的游戏 【容斥 + 递推】

    题目链接:UOJ - 51 据说这题与 CF 39E 类似. 题目分析 一看题目描述,啊,博弈论,不会!等待爆零吧... 这时,XCJ神犇拯救了我,他说,这题可以直接搜啊. 注意!是用记忆化搜索,状态 ...

  4. 【UR #4】元旦三侠的游戏(博弈论+记忆化)

    http://uoj.ac/contest/6/problem/51 题意:给m($m \le 10^5$)个询问,每次给出$a, b(a^b \le n, n \le 10^9)$,对于每一组$a, ...

  5. A. 【UR #4】元旦三侠的游戏

    题解: 挺水的吧 会发现当b不等于1的时候,状态只有sigma i x^(1/i) 显然这东西很小.. 然后我们会发现每个点向两个点动 定义必胜点和必败点 当一个点有一条边连向必败点 那么它就是必胜点 ...

  6. uoj51 元旦三侠的游戏

    题意:询问a,b,n.每次可以a+1或b+1,保证a^b<=n,不能操作者输.问先手是否赢? n<=1e9. 标程: #include<cstdio> #include< ...

  7. UOJ.52.[UR #4]元旦激光炮(交互 思路)

    题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...

  8. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

  9. UOJ #22 UR #1 外星人

    LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...

随机推荐

  1. Django模板语言(DTL)基础

    ## 模板变量 - 普通变量 {{ name }} - 对象变量(使用点号访问对象属性和方法,方法不加括号) {{ person.name }} ## 常用模板标签 # if标签,支持and,or,n ...

  2. ThinkPHP创建应用

    新建一个文件 引入ThinkPHP文件

  3. 记一次防火墙导致greenplum装机失败及定位修复过程

    一.问题现象 20180201:15:06:25:028653 gpinitsystem:sdw1-2:gpadmin-[INFO]:--------------------------------- ...

  4. Python学习笔记:第一天python基础

    目录 1. python简介 2. python的安装 3. 编写第一个helloword 4. 变量和常量 5. 数据类型 6. 输入 7. if语句 1. python简介 python是在198 ...

  5. flask(列表实现)

    在 index/views.py 中定义视图函数 在查询的时候,如果用户分类id传0,则不添加分类查询条件 @index_blu.route('/newslist') def get_news_lis ...

  6. ecshop 漏洞如何修复 补丁升级与安全修复详情

    目前ecshop漏洞大面积爆发,包括最新版的ecshop 3.0,ecshop 4.0,ecshop2.7.3全系列版本都存在着高危网站漏洞,导致网站被黑,被篡改,被挂马,许多商城系统深受其漏洞的攻击 ...

  7. 某CTF收集的Mysql爆表、爆字段语句

    Mysql特性 获取数据库名未知函数可爆数据库名 FUNCTION youcanneverfindme17.a does not exist 获取表名and linestring(pro_id)    ...

  8. SSH远程登录和端口转发详解

     SSH远程登录和端口转发详解   介绍 SSH 是创建在应用层和传输层基础上的安全协议,为计算机上的 Shell(壳层)提供安全的传输和使用环境. SSH 只是协议,有多种实现方式,本文基于其开源实 ...

  9. springMVC3

    复习: springmvc框架: DispatcherServlet前端控制器:接收request,进行response HandlerMapping处理器映射器:根据url查找Handler.(可以 ...

  10. python基础之进程间通信、进程池、协程

    进程间通信 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 进程队列queue 不同于线程queue,进程 ...