Palindrome
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 60290   Accepted: 20998

Description

A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

Sample Input

5
Ab3bd

Sample Output

2
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN=;
unsigned short int dp[MAXN][MAXN];//dp[i][j]表示以第i个字母开头,第j个字母结尾的构成回文子串所需添加的字符串
char s[MAXN];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
scanf("%s",s);
for(int i=;i<n;i++)
{
dp[i][i]=;//有一个字符时
}
for(int i=;i<n;i++)
{
if(s[i-]==s[i])
dp[i-][i]=;
else
dp[i-][i]=;
}
for(int k=;k<n;k++)
{
for(int i=,j=k;j<n;i++,j++)
{
if(s[i]==s[j])
dp[i][j]=dp[i+][j-];
else
dp[i][j]=min(dp[i+][j],dp[i][j-])+;
}
}
printf("%d\n",dp[][n-]);
}
return ;
}

POJ1159:动态规划的更多相关文章

  1. Poj1159 Palindrome(动态规划DP求最大公共子序列LCS)

    一.Description A palindrome is a symmetrical string, that is, a string read identically from left to ...

  2. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  3. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  4. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  5. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  6. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  7. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  8. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. iOS开发过程中常见错误问题及解决方案

    错误原因:ld: x duplicate symbol for architecture x86_64 clang: error: linker command failed with exit co ...

  2. INSPIRED启示录 读书笔记 - 第4章 产品管理与产品设计

    理解用户体验设计 1.用户研究:专门研究.分析用户,评估产品或产品原型是否符合特定用户的使用习惯.其具体工作包括拟订恰当的测试项目,监督测试,评估测试结果,提出改进方案 2.交互设计:在理解目标用户的 ...

  3. 数据库系统概论学习3-SQL 语句和关系代数(一)SQL 入门

    3. SQL 语句和关系代数(一)SQL 入门 3.1 数据库的编程语言 SQL 的优点 SQL 集成了数据查询(data query).数据操作(data manipulation).数据定义(da ...

  4. thinkphp 多表事务处理

    try{ $this->user = D('User'); $this->user->startTrans(); //开始事务 $res = $this->user->S ...

  5. Apollo原理

    https://github.com/ctripcorp/apollo/wiki/Apollo%E9%85%8D%E7%BD%AE%E4%B8%AD%E5%BF%83%E8%AE%BE%E8%AE%A ...

  6. 【bzoj2819】Nim(dfs序+树状数组/线段树)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2819 首先根据SG定理,可得若每堆石子数量的异或值为0,则后手必胜,反之先手必胜.于是 ...

  7. Mybatis单个参数的if判断(针对异常:There is no getter for property..)------mybatis的内置对象

    这里有一个删除方法: int deleteByPrimaryKey(Integer id); 然后对应的sql的xml如下: <delete id="deleteByPrimaryKe ...

  8. winform获取文件路径

    1.取得控制台应用程序的根目录方法     方法1.Environment.CurrentDirectory 取得或设置当前工作目录的完整限定路径     方法2.AppDomain.CurrentD ...

  9. R语言笔记003——set.seed()函数

    set.seed()函数 set.seed()设定生成随机数的种子,让样本可重复. > x<-rnorm() # 生成4个随机数 > x [] 0.6599492 0.5881863 ...

  10. mysqldump 用法汇总

    mysql mysqldump 只导出表结构 不导出数据 复制代码代码如下: mysqldump --opt -d 数据库名 -u root -p > xxx.sql  备份数据库  复制代码代 ...