分块,打标记,维护两个标记:乘的 和 加的。

每次 区间乘的时候,对 乘标记 和 加标记 都 乘上那个值。

每次 区间加的时候 对 加标记 加上那个值。

(ax+b)*v=axv+bv。开 long long。

 #include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
int n,sum,sz,num[],l[],r[],x,y,m,op;
ll MOD,a[],sumv[],lzy1[],lzy2[],v;
void makeblock()
{
sz=sqrt(n); if(!sz) sz=;
for(sum=;sum*sz<n;sum++)
{
l[sum]=r[sum-]+; r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];++i)
{
num[i]=sum;
sumv[sum]=(sumv[sum]+a[i])%MOD;
}
}
l[sum]=r[sum-]+; r[sum]=n;
for(int i=l[sum];i<=r[sum];++i)
{
num[i]=sum;
sumv[sum]=(sumv[sum]+a[i])%MOD;
}
for(int i=;i<=sum;++i) lzy1[i]=;
}
void pushdown(const int &p)
{
if(lzy1[p]!= || lzy2[p])
{
for(int i=l[p];i<=r[p];++i)
a[i]=(a[i]*lzy1[p]+lzy2[p])%MOD;
lzy1[p]=; lzy2[p]=;
}
}
void work1(const int &L,const int &R)
{
sumv[num[L]]=;
for(int i=L;i<=R;++i) a[i]=(a[i]*v)%MOD;
for(int i=l[num[L]];i<=r[num[L]];++i)
sumv[num[L]]=(sumv[num[L]]+a[i])%MOD;
}
void update1()
{
pushdown(num[x]); pushdown(num[y]);
if(num[x]==num[y]) work1(x,y);
else
{
work1(x,r[num[x]]); work1(l[num[y]],y);
for(int i=num[x]+;i<num[y];++i)
{
lzy1[i]=(lzy1[i]*v)%MOD;
lzy2[i]=(lzy2[i]*v)%MOD;
sumv[i]=(sumv[i]*v)%MOD;
}
}
}
void work2(const int &L,const int &R)
{
for(int i=L;i<=R;++i) a[i]=(a[i]+v)%MOD;
sumv[num[L]]=(sumv[num[L]]+(ll)(R-L+)*v)%MOD;
}
void update2()
{
pushdown(num[x]); pushdown(num[y]);
if(num[x]==num[y]) work2(x,y);
else
{
work2(x,r[num[x]]); work2(l[num[y]],y);
for(int i=num[x]+;i<num[y];++i)
{
lzy2[i]=(lzy2[i]+v)%MOD;
sumv[i]=(sumv[i]+(ll)sz*v)%MOD;
}
}
}
void query()
{
pushdown(num[x]); pushdown(num[y]); ll ans=;
if(num[x]==num[y]) {for(int i=x;i<=y;++i) ans=(ans+a[i])%MOD;}
else
{
for(int i=x;i<=r[num[x]];++i) ans=(ans+a[i])%MOD;
for(int i=l[num[y]];i<=y;++i) ans=(ans+a[i])%MOD;
for(int i=num[x]+;i<num[y];++i) ans=(ans+sumv[i])%MOD;
} printf("%d\n",(int)ans);
}
int main()
{
scanf("%d%lld",&n,&MOD);
for(int i=;i<=n;++i) scanf("%lld",&a[i]);
makeblock(); scanf("%d",&m);
for(;m>;--m)
{
scanf("%d%d%d",&op,&x,&y);
if(op==) {scanf("%lld",&v); update1();}
else if(op==) {scanf("%lld",&v); update2();}
else query();
}
return ;
}

【分块】bzoj1798 [Ahoi2009]Seq 维护序列seq的更多相关文章

  1. BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 5504  Solved: 1937[Submit ...

  2. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  3. 1798: [Ahoi2009]Seq 维护序列seq

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 2930  Solved: 1087[Submit ...

  4. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  6. Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...

  7. BZOJ1798[Ahoi2009]Seq 维护序列seq 题解

    题目大意: 有长为N的数列,有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值. ...

  8. 【bzoj1798】[Ahoi2009]Seq 维护序列seq 线段树

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  9. [bzoj1798][Ahoi2009]Seq 维护序列seq ([洛谷P3373]【模板】线段树 2)

    题目大意:有$n$个数,有$m$个操作,有三种: $1\;l\;r\;x:$把区间$[l,r]$内的数乘上$x$ $2\;l\;r\;x:$把区间$[l,r]$内的数加上$x$ $3\;l\;r:$询 ...

随机推荐

  1. Spring源码解析-实例化bean对象

    spring加载配置文件,AbstractApplicationContext类中的refresh方法起着重要的作用. @Override public void refresh() throws B ...

  2. codeforces 1060 C

    https://codeforces.com/contest/1060/problem/C 题意:给你一个长度为n的数列a和长度为m的数列b,定义c(i,j)=ai*bj,得到c矩阵,给定值x,求c矩 ...

  3. bzoj 5094 [Lydsy1711月赛]硬盘检测 概率dp

    [Lydsy1711月赛]硬盘检测 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 273  Solved: 75[Submit][Status][Dis ...

  4. a标签的download属性简介

    最近在工作中需要一个前端直接下载静态文件的需求,之前有粗略的了解过a标签的download属性,通过download和href属性可以实现文件的下载. 简介 HTML <a> 元素 (或锚 ...

  5. Xamarin+vs2010部署错误:error MSB6004: 指定的任务可执行文件位置\sdk\\tools\zipalign.exe”无效

    好不容易配好了Xamarin和vs2010,也搞好了GenyMotion的虚拟机配置,开始调试的时候又报出了这样的错误: error MSB6004: 指定的任务可执行文件位置"C:\Use ...

  6. 链接加载文件gcc __attribute__ section

    在阅读源代码的过程中,发现一个头文件有引用: /** The address of the first device table entry. */ extern device_t devices[] ...

  7. camera驱动框架分析(中)

    camera host的驱动 下面开始分析camera host吧,如果仅仅是想知道camera sensor驱动怎么写,而不想知道内部具体怎么个调用流程,怎么个架构设计,那可以跳过该部分,直接去看i ...

  8. suse下自动启动脚本

    suse下自动启动脚本 http://blog.csdn.net/herobox/article/details/8961358 suse下自动启动脚本 也许你对SUSE Linux很了解,也许你不太 ...

  9. c++文件流写入到execl中

    #include <iostream> #include <fstream> #include <string> using namespace std; int ...

  10. springcloud+eureka简单入门案例

    springcloud+eureka简单入门案例 一.服务提供者 直接提供服务,入门案例没有特别要设置的地方,注意下端口,由于要启动多个服务,可能会冲突 配置文件(src/main/resources ...