Link:

BZOJ 1833 传送门

Solution:

比较明显的数位DP

先预处理出1~9和包括前导0的0的个数:$pre[i]=pre[i-1]*10+10^{digit-1}$

(可以分为首位和其它位来考虑问题)

求$(L,R)$的个数,可以用$(1,R)-(1,L-1)$差分来做

在求$(1,K)$时,我们先根据预处理的值算出$[0,999....99]$的值(不受边界影响)

接下来从最高位开始尽可能增加$10^n$,直到达到边界后再开始增加$10^{n-1}$

每次对于前面已确定的部分暴力算,而后面不确定的、可任意取值的直接用$pre[i]$统计

Code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll res[],pre[]; void split(ll x,ll pos){while(x) res[x%]+=pos,x/=;}
void Digital_DP(ll x,int flag)
{
int i,j;ll pos=,now;
for(i=;pos<x;i++)//对[0,99..99]进行统计
{
for(j=;j<=;j++)
res[j]+=pre[i-]**flag;
for(j=;j<=;j++)
res[j]+=pos/*flag;
pos*=;
} now=pos/=;i--;
while(now<x)
{
while(now+pos<=x)
{
ll temp=now/pos;
split(temp,pos*flag);//对已确定部分的暴力统计
for(j=;j<=;j++)//对可任意取值部分的统一计算
res[j]+=pre[i]*flag;
now+=pos;
}
pos/=;i--;
}
}
int main()
{
int i;ll a,b,pos=;
pre[]=;
for(i=;i<=;i++)
pre[i]=pre[i-]*+pos,pos*=; cin >> a >> b;
Digital_DP(b+,);Digital_DP(a,-);
for(i=;i<=;i++) cout << res[i] << " ";
}

Review:

1、对于所有i位中每个数字出现次数的预处理要积累:

$pre[i]=pre[i-1]*10+10^{digit-1}$

2、数位统计中的区间问题,考虑差分,都化为$(1,K)$的形式进行求解

3、数位DP中,特殊处理边界;数字出现次数,特殊处理前导0

[BZOJ 1833] 数字计数的更多相关文章

  1. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

  2. BZOJ 1833: [ZJOI2010]count 数字计数( dp )

    dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...

  3. 【BZOJ】【1833】【ZJOI2010】count 数字计数

    数位DP Orz iwtwiioi 学习了一下用记忆化搜索来捉题的新姿势……但没学会TAT,再挖个坑(妈蛋难道对我来说数位DP就是个神坑吗……sigh) //BZOJ 1833 #include< ...

  4. [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】

    题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...

  5. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  6. BZOJ 1833 【ZJOI2010】 数字计数

    题目链接:数字计数 没啥好说的,裸裸的数位\(dp\). 先枚举当前是算数字\(x\)出现的次数,设\(f_{i,j}\)表示从高位往低位\(dp\),\(dp\)完了前\(i\)位之后\(x\)出现 ...

  7. 1833: [ZJOI2010]count 数字计数

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2951  Solved: 1307[Submit][ ...

  8. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  9. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

随机推荐

  1. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  2. [模拟赛] StopAllSounds

    Description 小松鼠开心地在树之间跳跃着,突然她停了下来.因为眼前出现了一个 拿着专克超萌小松鼠的法宝----超萌游戏机的游客! 超萌游戏机之所以拥有这个名字,是因为它的屏幕是一个n × 2 ...

  3. python3初识selenium

    第一步:安装与配置 1.电脑上需要有火狐浏览器(默认安装在C:\Program Files (x86)\Mozilla Firefox目录下). 2.使用pip install selenium安装好 ...

  4. java实现极简的LRU算法

    import java.util.LinkedHashMap;import java.util.Map; /** * LRU (Least Recently Used)  */public class ...

  5. 使用命令wsimport生成WebService客户端

    使用命令wsimport生成WebService客户端 wsimpost命令有几个重要的参数: -keep:是否生成java源文件    -d:指定输出目录    -s:指定源代码输出目录    -p ...

  6. 程序员的那些问题---转载自veryCD

    展望未来,总结过去10年的程序员生涯,给程序员小弟弟小妹妹们的一些总结性忠告   走过的路,回忆起来是那么曲折,把自己的一些心得体会分享给程序员兄弟姐妹们,虽然时代在变化,但是很可能你也会走我已经做过 ...

  7. JavaScript 页面间传值

    转自:http://blog.csdn.net/qq380107165/article/details/7330612 一:JavaScript静态页面值传递之URL篇 能过URL进行传值,把要传递的 ...

  8. 优化IDEA启动速度,快了好多。后面有什么优化点,会继续往里面添加

    1.优化启动 修改bin/idea.exe.vmoptions文件如下: -Xms256m   初始堆大小-Xmx384m   最大堆大小 -XX:+UseParNewGC   使用并行收集算法 2. ...

  9. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  10. canvas动态绘制饼状图,

    当我们使用Echrts很Highcharts的时候,总是觉得各种统计图表是多么神奇,今天我就用现代浏览器支持的canvas来绘制饼状统计图,当然仅仅是画出图并没什么难度,但是统计图一般都有输入,根据不 ...