Link:

BZOJ 1833 传送门

Solution:

比较明显的数位DP

先预处理出1~9和包括前导0的0的个数:$pre[i]=pre[i-1]*10+10^{digit-1}$

(可以分为首位和其它位来考虑问题)

求$(L,R)$的个数,可以用$(1,R)-(1,L-1)$差分来做

在求$(1,K)$时,我们先根据预处理的值算出$[0,999....99]$的值(不受边界影响)

接下来从最高位开始尽可能增加$10^n$,直到达到边界后再开始增加$10^{n-1}$

每次对于前面已确定的部分暴力算,而后面不确定的、可任意取值的直接用$pre[i]$统计

Code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll res[],pre[]; void split(ll x,ll pos){while(x) res[x%]+=pos,x/=;}
void Digital_DP(ll x,int flag)
{
int i,j;ll pos=,now;
for(i=;pos<x;i++)//对[0,99..99]进行统计
{
for(j=;j<=;j++)
res[j]+=pre[i-]**flag;
for(j=;j<=;j++)
res[j]+=pos/*flag;
pos*=;
} now=pos/=;i--;
while(now<x)
{
while(now+pos<=x)
{
ll temp=now/pos;
split(temp,pos*flag);//对已确定部分的暴力统计
for(j=;j<=;j++)//对可任意取值部分的统一计算
res[j]+=pre[i]*flag;
now+=pos;
}
pos/=;i--;
}
}
int main()
{
int i;ll a,b,pos=;
pre[]=;
for(i=;i<=;i++)
pre[i]=pre[i-]*+pos,pos*=; cin >> a >> b;
Digital_DP(b+,);Digital_DP(a,-);
for(i=;i<=;i++) cout << res[i] << " ";
}

Review:

1、对于所有i位中每个数字出现次数的预处理要积累:

$pre[i]=pre[i-1]*10+10^{digit-1}$

2、数位统计中的区间问题,考虑差分,都化为$(1,K)$的形式进行求解

3、数位DP中,特殊处理边界;数字出现次数,特殊处理前导0

[BZOJ 1833] 数字计数的更多相关文章

  1. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

  2. BZOJ 1833: [ZJOI2010]count 数字计数( dp )

    dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...

  3. 【BZOJ】【1833】【ZJOI2010】count 数字计数

    数位DP Orz iwtwiioi 学习了一下用记忆化搜索来捉题的新姿势……但没学会TAT,再挖个坑(妈蛋难道对我来说数位DP就是个神坑吗……sigh) //BZOJ 1833 #include< ...

  4. [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】

    题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...

  5. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  6. BZOJ 1833 【ZJOI2010】 数字计数

    题目链接:数字计数 没啥好说的,裸裸的数位\(dp\). 先枚举当前是算数字\(x\)出现的次数,设\(f_{i,j}\)表示从高位往低位\(dp\),\(dp\)完了前\(i\)位之后\(x\)出现 ...

  7. 1833: [ZJOI2010]count 数字计数

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2951  Solved: 1307[Submit][ ...

  8. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  9. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

随机推荐

  1. Hadoop 学习之MapReduce

    MapReduce充分利用了分而治之,主要就是将一个数据量比较大的作业拆分为多个小作业的框架,而用户需要做的就是决定拆成多少份,以及定义作业本身,用户所要做的操作少了又少,真是Very Good! 一 ...

  2. import pymongo exceptions.ImportError: No module named pymongo

    最近用Scrapy写爬虫,将爬取的数据存入Mongodb中,使用的是pymongo这个库,但是运行的时候报错如标题所示 搜了好多网站包括stackoverflow都没有解决,后来发现自己用的是虚拟环境 ...

  3. 仿FLASH的图片轮换效果

    css布局代码(test.css): body { background: #ccc;} ul { padding: 0; margin: 0;} li { list-style: none;} im ...

  4. HTTP缓存原理

    http的缓存分为强制缓存和对比缓存,两者的区别在于,强制缓存只要设置的时间不过期,就可以直接拿去用,而不用向服务器再一次发送请求.而对比缓存不管缓存是否有效,都需要向服务器发送请求. 其过程如下: ...

  5. ViewPager使用--文章集锦

    viewpager中彻底性动态添加.删除Fragment Android ViewPager使用详解 fragment中嵌套viewpager,vierpager中有多个fragment,不显示 .. ...

  6. jvm面试必会基本知识

    内存: 堆区 1.new的对象实例  ps:(java堆可以细分为新生代和老年代)(通过-xmx和-xms来实现可扩展) 虚拟机栈 局部变量 本地方法栈 为虚拟机使用的native方法服务 方法区 s ...

  7. kdtree学习记录

    [转载请注明来自 Galaxies的博客:http://cnblogs.com/galaxies] 这篇文章当做一个记录啦qwq 参考:<K-D Tree在信息学竞赛中的应用>(n+e, ...

  8. COGS727 [网络流24题] 太空飞行计划

    [问题描述] W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪 ...

  9. 【BZOJ】1596: [Usaco2008 Jan]电话网络

    [算法]树上贪心 [题解] 因为一个点必须被覆盖,那么它如果没有被子树节点覆盖的话,就覆盖它的父节点. 从叶子开始贪心. 注意,如果它自己已经被选了就不需要选父节点了. #include<cst ...

  10. 12.22笔记(关于CALayer//Attributes//CALayer绘制图层//CALayer代理绘图//CALayer动画属性//CALayer自定义子图层//绘图pdf文件//绘图渐变效果)

    12.22笔记 pdf下载文件:https://www.evernote.com/shard/s227/sh/f81ba498-41aa-443b-81c1-9b569fcc34c5/f033b89a ...