E. Boredom

Ilya is sitting in a waiting area of Metropolis airport and is bored of looking at time table that shows again and again that his plane is delayed. So he took out a sheet of paper and decided to solve some problems.

First Ilya has drawn a grid of size n × n and marked n squares on it, such that no two marked squares share the same row or the same column. He calls a rectangle on a grid with sides parallel to grid sides beautiful if exactly two of its corner squares are marked. There are exactly n·(n - 1) / 2 beautiful rectangles.

Ilya has chosen q query rectangles on a grid with sides parallel to grid sides (not necessarily beautiful ones), and for each of those rectangles he wants to find its beauty degree. Beauty degree of a rectangle is the number of beautiful rectangles that share at least one square with the given one.

Now Ilya thinks that he might not have enough time to solve the problem till the departure of his flight. You are given the description of marked cells and the query rectangles, help Ilya find the beauty degree of each of the query rectangles.

Input

The first line of input contains two integers n and q (2 ≤ n ≤ 200 000, 1 ≤ q ≤ 200 000) — the size of the grid and the number of query rectangles.

The second line contains n integers p1, p2, ..., pn, separated by spaces (1 ≤ pi ≤ n, all pi are different), they specify grid squares marked by Ilya: in column i he has marked a square at row pi, rows are numbered from 1 to n, bottom to top, columns are numbered from 1 to n, left to right.

The following q lines describe query rectangles. Each rectangle is described by four integers: l, d, r, u (1 ≤ l ≤ r ≤ n, 1 ≤ d ≤ u ≤ n), here land r are the leftmost and the rightmost columns of the rectangle, d and u the bottommost and the topmost rows of the rectangle.

Output

For each query rectangle output its beauty degree on a separate line.

Examples
input
2 3
1 2
1 1 1 1
1 1 1 2
1 1 2 2
output
1
1
1
input
4 2
1 3 2 4
4 1 4 4
1 1 2 3
output
3
5
Note

The first sample test has one beautiful rectangle that occupies the whole grid, therefore the answer to any query is 1.

In the second sample test the first query rectangle intersects 3 beautiful rectangles, as shown on the picture below:

There are 5 beautiful rectangles that intersect the second query rectangle, as shown on the following picture:

这道题 题意就是给你n个点 这n个点 两两可以组成一个矩阵(作为两个角的位置)

然后给你q个询问 询问给你一个矩阵的左上角和右上角 求 n个点两两配对组成的矩阵有多少个和他有交

这道题我的写法可能有点暴力

就是把一个矩阵的四条边延长 延长之后呢 就变成了九个矩阵

这样就变成了这九个矩阵之间两两配对之后是否和矩阵有交

这个画一下图应该就可以了 至于求每个矩阵中有多少个点

就可以利用扫描线来实现 一个询问拆成9个 容斥一下就可以得到全部答案了

复杂度主要是排序的nlogn 当然因为拆询问的缘故 n要乘9

代码略丑QAQ

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int M=2e6+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL tot;
int s[*M];
LL ans[M][];
int n,m,xp,qp,ep;
int lowbit(int x){return x&-x;}
void add(int x,LL v){
while(x<=n){
s[x]+=v;
x+=lowbit(x);
}
}
int query(int x){
LL ans=;
while(x){
ans+=s[x];
x-=lowbit(x);
}
return ans;
}
struct Q{
int r,h,id,pos;
bool operator <(const Q& x)const{return h<x.h;}
void calc(){ans[id][pos]=query(r);}
}q[*M];
struct pos{
int x,y,w;
bool operator <(const pos& h)const{return y<h.y;}
void calc(){add(x,w);}
}e[M];
int main()
{
int x1,y1,x2,y2;
n=read(); m=read();
for(int i=;i<=n;i++){
y1=read();
e[ep++]=(pos){i,y1,};
}
for(int i=;i<=m;i++){
x1=read(); y1=read(); x2=read(); y2=read();
q[qp++]=(Q){x1-,y1-,i,};
q[qp++]=(Q){x1-,y2,i,};
q[qp++]=(Q){x1-,n,i,};
q[qp++]=(Q){x2,y1-,i,};
q[qp++]=(Q){x2,y2,i,};
q[qp++]=(Q){x2,n,i,};
q[qp++]=(Q){n,y1-,i,};
q[qp++]=(Q){n,y2,i,};
q[qp++]=(Q){n,n,i,};
}
sort(e,e+ep); sort(q,q+qp);
for(int i=,j=;i<qp;i++){
while(j<ep&&e[j].y<=q[i].h) e[j++].calc();
q[i].calc();
}
for(int i=;i<=m;i++){
tot=;
LL h[];
h[]=ans[i][];
h[]=ans[i][]-ans[i][];
h[]=ans[i][]-ans[i][];
h[]=ans[i][]-ans[i][];
h[]=ans[i][]-ans[i][]-ans[i][]+ans[i][];
h[]=ans[i][]-ans[i][]-ans[i][]+ans[i][];
h[]=ans[i][]-ans[i][];
h[]=ans[i][]-ans[i][]-ans[i][]+ans[i][];
h[]=ans[i][]-ans[i][]-ans[i][]+ans[i][];
tot=tot+h[]*(h[]+h[]+h[]+h[]+h[]+h[]+h[]+h[]);
tot=tot+h[]*(h[]-)/;
tot=tot+h[]*(h[]+h[]+h[]);
tot=tot+h[]*(h[]+h[]);
tot=tot+h[]*(h[]+h[]+h[]);
tot=tot+h[]*(h[]+h[]+h[]);
tot=tot+h[]*(h[]+h[]+h[]+h[]+h[]);
printf("%I64d\n",tot);
}
return ;
}

codeforces 854 problem E的更多相关文章

  1. CodeForces 1151C Problem for Nazar

    题目链接:http://codeforces.com/problemset/problem/1151/C 题目大意: 有一个只存奇数的集合A = {1, 3, 5……2*n - 1,……},和只存偶数 ...

  2. codeforces gym100801 Problem G. Graph

    传送门:https://codeforces.com/gym/100801 题意: 给你一个DAG图,你最多可以进行k次操作,每次操作可以连一条有向边,问你经过连边操作后最小拓扑序的最大值是多少 题解 ...

  3. codeforces gym100801 Problem J. Journey to the “The World’s Start”

    传送门:https://codeforces.com/gym/100801 题意: 小明坐地铁,现在有n-1种类型的地铁卡卖,现在小明需要买一种地铁票,使得他可以在t的时间内到达终点站,地铁票的属性为 ...

  4. Codeforces 1188E - Problem from Red Panda(找性质+组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 咦,题解搬运人竟是我? 一道很毒的计数题. 先转化下题意,每一次操作我们可以视作选择一种颜色并将其出现次数 \(+k\),之后将所有颜色的 ...

  5. CodeForces 688C-NP-Hard Problem

    题意: 给你一个无向图,判断是否能够构成一个二分图,如果能的话,输出二分图左边的集合和右边的集合 分析: 先给每一个顶点的color初始化-1,表示没有被染色,用vector数组v[a],表示元素a所 ...

  6. codeforces #583 problem D(搜索好题)

    题目大意:在一个已经有障碍的地图上,设置尽可能少的障碍使得(1,1)无法到达(n,m),行进路线位向下或向右. 数据范围:n*m<=1e6 解题思路:答案一定是小于等于2的,因为可以直接阻碍(1 ...

  7. Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises)

    A. Fraction 题目链接:http://codeforces.com/contest/854/problem/A 题目意思:给出一个数n,求两个数a+b=n,且a/b不可约分,如果存在多组满足 ...

  8. Codeforces 854B Maxim Buys an Apartment:贪心

    题目链接:http://codeforces.com/contest/854/problem/B 题意: 有n栋房子从1到n排成一排,有k栋房子已经被售出. 现在你要买一栋“好房子”. 一栋房子是“好 ...

  9. #433 Div2 Problem C Planning (贪心 && 优先队列)

    链接 : http://codeforces.com/contest/854/problem/C 题意 : 有 n 架飞机需要分别在 1~n 秒后起飞,允许起飞的时间是从 k 秒后开始,给出每一架飞机 ...

随机推荐

  1. vue2.0 watch

    类型:string | Function | Object vue官网解释: 一个对象,键是需要观察的表达式,值是对应回调函数.值也可以是方法名,或者包含选项的对象.Vue 实例将会在实例化时调用 $ ...

  2. Kotlin的Reified类型:怎样在函数内使用这一类型(KAD 14)

    作者:Antonio Leiva 时间:Mar 2, 2017 原文链接:https://antonioleiva.com/reified-types-kotlin/ 对于Java开发者来说,最懊恼的 ...

  3. Jmeter——小性能用例

    1.添加默认值,将代理服务器写入 2.添加HTTP请求头,将域名部分用变量形式写入:${__CSVRead(D:/number.txt,0)},这是为了查询不同页面,在D:/number.txt路径下 ...

  4. CSS3 : transform 与 transform-origin 属性可以使元素样式发生转变

    CSS3 : transform 用于元素样式的转变,比如使元素发生位移.角度变化.拉伸缩小.按指定角度歪斜 transform结合transition可实现各类动画效果 transform : tr ...

  5. C语言运算符(注意事项)

    1.C语言取余注意事项:%   a.求余.模运算符(%)时要求两数必须是整型数据. b.取余的结果,是取决于被除数   (不管除数是正数 还是 负数,模的符号与被除数的符号相同).   例:8÷2=4 ...

  6. Micro Average vs Macro average Performance in a Multiclass classification setting

    整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...

  7. Python 把两个列表遍历为一个

    两个list, 有对应关系,希望同时完成遍历 用迭代器迭代的方法也不是不可以,python提供了更直观的方法: 可以使用zip把两个list打包 , 类似: list1 = [1,2,3,4] lis ...

  8. RDL/RDLC批量单据打印

    使用RDL或RDLC进行单据打印时,单张单据打印比较直观简单,无需说明.下面我们来谈一下批量单据打印的实现方法.以下以RDL的ReportBuilder设计环境为例进行讲解,RDLC.VS设计环境同理 ...

  9. NO12——快速幂取模

    long long quickmod(long long a,long long b,long long m) { ; while(b)//用一个循环从右到左便利b的所有二进制位 { )//判断此时b ...

  10. 好用的在线pdf转化器

    https://smallpdf.com/cn/compress-pdf