BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解
传送门
题解
……怎么说呢……本来想写线段树+矩阵乘法的……
……但是嘛……yali的机房太热了……困……写不出来……
于是弃疗,写起了莫队。(但是我连莫队都想不出来!)
首先用单调栈可以轻松求出每个元素左右两边第一个比它小的元素位置,分别设为tl[i]、tr[i]。
莫队关键就是在一端插入/删除元素时如何维护当前区间的答案嘛,而这就需要快速计算当前区间左/右端点对当前区间的贡献。
下面以在左边插入一个元素为例,设插入后区间是[l, r]。
插入这个元素的时候,新增的区间显然是左端点为l、右端点为l~r的所有区间。它们的贡献按照最小值分类,可以分为:最小值为a[l]的、最小值为a[tr[l]]的、最小值为a[tr[tr[l]]]的……最小值为[l, r]区间最小值(它的位置设为p)的。
那么每个最小值 * 最小值为它的区间个数,再加起来,就是左端点的贡献。
为了快速求出,可以对每个元素维护一个“前缀和”,表示以这个元素为左/右端点的所有区间的最小值之和,分别设为sr[i]和sl[i]。以sr[i]为例:
sr[i] = sr[tr[i]] + a[i] * (tr[i] - i)
然后,区间[l, r]左端点的贡献就是sr[i] - sr[p] + a[p] * (r - p +1)。
右边a[p] * (r - p + 1)这一块是因为以a[p]为最小值的区间不一定都包含在[l, r]内,有的右端点在r的右面。
这样,结合莫队,就可以AC了!
……(低级失误:用st表维护的是下标,却把值作为初值传了进去……还有把查询时的j打成j-1……)
BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解的更多相关文章
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- bzoj 4540: [Hnoi2016]序列 莫队
题目: 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a ...
- [HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ) 洛谷 bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- BZOJ 4540 [Hnoi2016]序列 (单调栈 + ST表 + 莫队算法)
题目链接 BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) ...
- 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈
[BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...
- [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)
Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...
- BZOJ.4542.[HNOI2016]大数(莫队)
题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...
随机推荐
- Ueditor使用笔记
富文本编辑器在javaweb项目中还是比较常见的,如:ckeditor.kindeditor.ueditor等.今天主要叙述的对象为ueditor,它属于百度的.闲话不多说,下面开始介 ...
- Eclispe与JDK
一.Eclispe 1.1 Eclispe发布版本 下面是目前已知的版本代号 (Release)[2015年2月] Eclipse 3.1 版本代号 IO [木卫1,伊奥] Eclipse 3.2 版 ...
- [转]申瓯 JSY2000-06 程控电话交换机呼叫转移设置
说明:若申瓯程控电话交换机分机有事不在位置上或遇忙分机正忙时为使某些重要来话不丢失,可设置将呼入本机的电话转移至其他分机及公网固定电话或手机.电话交换机使用了本功能不管分机用户在什么地方都能接听到办公 ...
- ConceptVector: Text Visual Analytics via Interactive Lexicon Building using Word Embedding
论文简介 本文是对词嵌入的一种应用,用户可以根据自己的需要创建concept,系统根据用户提供的seed word推荐其他词汇,以帮助用户更高的构建自己的concept.同时用户可以利用自己创建的 ...
- ABP中文文档及源码说明
目录 ABP.ModuleZero(ABP自带的一套用户模块) 版本管理(Edition) 特性管理(Feature)
- PAT甲题题解-1008. Elevator (20)-大么个大水题,这也太小瞧我们做题者的智商了
如题... #include <iostream> #include <cstdio> #include <algorithm> #include <cstr ...
- PAT甲题题解-1028. List Sorting (25)-水排序
#include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...
- Haskell(一 )------ Windos下环境配置
1.去官网下载安装包 2.然后运行安装包路径最好就不要改了. 3.打开命令行输入 cabal user-config init 会出现默认的放置配置文件的地址,然后到那个文件夹下修改config文件. ...
- 3D舞台实现
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Linux命令(二十二) 改变文件权限 chomd
目录 1.命令简介 2.常用参数介绍 3.实例 4.直达底部 命令简介 chmod 命令是用来改变文件权限或目录的命令,可以将指定文件的拥有着改为指定的用户或组,用户可以是用户名或用户ID,组可以是组 ...