参考:https://trinkle23897.github.io/pdf/K-D%20Tree.pdf

  KD-Tree是一种维护K维空间点的类似BST的数据结构。绝大多数时候只用来维护二维空间的点,因为维度越高复杂度越辣鸡。下面只考虑平面上的KD-Tree,即2D-Tree。

  KD-Tree以分割平面来实现类似BST的建树。具体的,取该坐标中位数(即相当于划了一条直线)将点集划分成两部分,刚好被取作中位数的点放在该节点,并记录该节点管辖的平面区域范围。剩余的点分别放进左右儿子,递归建树。由于只需要按中位数分割,可以使用nth_element去掉排序的log。每次用来划分的维度应交替(或者随机,总之越均匀越好)选择,以保证之后查询的玄学复杂度。建树复杂度显然是O(nlogn)。

  KD-Tree最常用的是用来查找某点的曼哈顿/欧几里得距离最近点。具体做法实际上就是A*,即考虑应该往一个节点的左儿子还是右儿子继续查找时,通过节点的平面区域范围给它一个估价函数(当然不劣于实际),如果估价劣于已经找到的最优答案,当然不继续递归,否则优先递归估价较优的。据说复杂度随机O(logn),能卡到O(√n)。

  同时KD-Tree还可以滋磁矩形查询。具体做法实际上就是线段树,即如果当前节点所管辖的范围被查询范围包含,直接返回该节点答案,否则暴力递归左右节点查询。复杂度同样是O(√n),丝毫不会证。

  插入一个点是非常正常的操作,但是在KD-Tree里插入点有和BST一样的问题,即一不小心就不平衡了。如果可以离线,事实上可以先给所有点建好KD-Tree,将一开始不存在的点打上标记,实际插入该点时清除标记激活该点。如果强制在线,同样根据建树的方式找到点的插入位置,使用替罪羊式的重构或定期重构。

KD-Tree学习笔记的更多相关文章

  1. k-d tree 学习笔记

    以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...

  2. K-D Tree学习笔记

    用途 做各种二维三维四维偏序等等. 代替空间巨大的树套树. 数据较弱的时候水分. 思想 我们发现平衡树这种东西功能强大,然而只能做一维上的询问修改,显得美中不足. 于是我们尝试用平衡树的这种二叉树结构 ...

  3. kd tree学习笔记 (最近邻域查询)

    https://zhuanlan.zhihu.com/p/22557068 http://blog.csdn.net/zhjchengfeng5/article/details/7855241 KD树 ...

  4. 珂朵莉树(Chtholly Tree)学习笔记

    珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...

  5. dsu on tree学习笔记

    前言 一次模拟赛的\(T3\):传送门 只会\(O(n^2)\)的我就\(gg\)了,并且对于题解提供的\(\text{dsu on tree}\)的做法一脸懵逼. 看网上的其他大佬写的笔记,我自己画 ...

  6. Link Cut Tree学习笔记

    从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...

  7. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  8. splay tree 学习笔记

    首先感谢litble的精彩讲解,原文博客: litble的小天地 在学完二叉平衡树后,发现这是只是一个不稳定的垃圾玩意,真正实用的应有Treap.AVL.Splay这样的查找树.于是最近刚学了学了点S ...

  9. LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘

    The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and ex ...

  10. LSM Tree 学习笔记——MemTable通常用 SkipList 来实现

    最近发现很多数据库都使用了 LSM Tree 的存储模型,包括 LevelDB,HBase,Google BigTable,Cassandra,InfluxDB 等.之前还没有留意这么设计的原因,最近 ...

随机推荐

  1. 提高SQL查询效率的30种方法

    转载:提高SQL查询效率的30种方法 内容摘录如下: 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中 ...

  2. 创建一个目录的软连接ln -s和打印当前目录pwd的一个知识点

    创建一个目录的软连接,比如我在家目录下创建一个/data/www/的软连接,如下 # cd ~ # ln -s /data/www hehe       #这里一定要注意顺序哈哈 然后当我进入hehe ...

  3. C51中的关键字和ANSIC标准关键字

    C51中的关键字和ANSIC标准关键字 作       者:武力戡乱 修改日期:2017-09-05 备       注: 1.总备注信息 2.联系方式 3.其它博文链接:武力戡乱博客目录总表 内   ...

  4. 基于Python自动发送QQ群消息

    1.准备工作 此次测试基于python3,需要安装qqbot.bs4.requests库. qqbot项目地址:https://github.com/pandolia/qqbot.git pip qq ...

  5. SVD(奇异值分解)小结

    注:奇异值分解在数据降维中有较多的应用,这里把它的原理简单总结一下,并且举一个图片压缩的例子,最后做一个简单的分析,希望能够给大家带来帮助. 1.特征值分解(EVD) 实对称矩阵 在理角奇异值分解之前 ...

  6. [SDOI2010]地精部落[计数dp]

    题意 求有多少长度为 \(n\) 的排列满足 \(a_1< a_2> a_3 < a_4 \cdots\) 或者 $a_1> a_2 < a_3 > a_4\cdo ...

  7. django在admin后台注册自己创建的数据库表

    django在admin后台注册自己创建的数据库表,这样我们就可以在admin后台看到表结构信息,我们就可以在admin后台快速录入表记录信息 如果没有注册,那么你在登录django自带的admin的 ...

  8. git和github使用教程

    看官请移步git和github简单教程, 本文是上述链接的截图,担心哪天作者不小心删除了,备一份在自己这里,仅为自己看着方便.侵权请告知

  9. stl源码剖析 详细学习笔记 set map

    // //  set map.cpp //  笔记 // //  Created by fam on 15/3/23. // // //---------------------------15/03 ...

  10. BLCR技术初探

    BLCR技术到底是什么技术?我没空和你乱扯,自己去看该官方网站的介绍:http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/BLC ...