KD-Tree学习笔记
参考:https://trinkle23897.github.io/pdf/K-D%20Tree.pdf
KD-Tree是一种维护K维空间点的类似BST的数据结构。绝大多数时候只用来维护二维空间的点,因为维度越高复杂度越辣鸡。下面只考虑平面上的KD-Tree,即2D-Tree。
KD-Tree以分割平面来实现类似BST的建树。具体的,取该坐标中位数(即相当于划了一条直线)将点集划分成两部分,刚好被取作中位数的点放在该节点,并记录该节点管辖的平面区域范围。剩余的点分别放进左右儿子,递归建树。由于只需要按中位数分割,可以使用nth_element去掉排序的log。每次用来划分的维度应交替(或者随机,总之越均匀越好)选择,以保证之后查询的玄学复杂度。建树复杂度显然是O(nlogn)。
KD-Tree最常用的是用来查找某点的曼哈顿/欧几里得距离最近点。具体做法实际上就是A*,即考虑应该往一个节点的左儿子还是右儿子继续查找时,通过节点的平面区域范围给它一个估价函数(当然不劣于实际),如果估价劣于已经找到的最优答案,当然不继续递归,否则优先递归估价较优的。据说复杂度随机O(logn),能卡到O(√n)。
同时KD-Tree还可以滋磁矩形查询。具体做法实际上就是线段树,即如果当前节点所管辖的范围被查询范围包含,直接返回该节点答案,否则暴力递归左右节点查询。复杂度同样是O(√n),丝毫不会证。
插入一个点是非常正常的操作,但是在KD-Tree里插入点有和BST一样的问题,即一不小心就不平衡了。如果可以离线,事实上可以先给所有点建好KD-Tree,将一开始不存在的点打上标记,实际插入该点时清除标记激活该点。如果强制在线,同样根据建树的方式找到点的插入位置,使用替罪羊式的重构或定期重构。
KD-Tree学习笔记的更多相关文章
- k-d tree 学习笔记
以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...
- K-D Tree学习笔记
用途 做各种二维三维四维偏序等等. 代替空间巨大的树套树. 数据较弱的时候水分. 思想 我们发现平衡树这种东西功能强大,然而只能做一维上的询问修改,显得美中不足. 于是我们尝试用平衡树的这种二叉树结构 ...
- kd tree学习笔记 (最近邻域查询)
https://zhuanlan.zhihu.com/p/22557068 http://blog.csdn.net/zhjchengfeng5/article/details/7855241 KD树 ...
- 珂朵莉树(Chtholly Tree)学习笔记
珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...
- dsu on tree学习笔记
前言 一次模拟赛的\(T3\):传送门 只会\(O(n^2)\)的我就\(gg\)了,并且对于题解提供的\(\text{dsu on tree}\)的做法一脸懵逼. 看网上的其他大佬写的笔记,我自己画 ...
- Link Cut Tree学习笔记
从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...
- 矩阵树定理(Matrix Tree)学习笔记
如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...
- splay tree 学习笔记
首先感谢litble的精彩讲解,原文博客: litble的小天地 在学完二叉平衡树后,发现这是只是一个不稳定的垃圾玩意,真正实用的应有Treap.AVL.Splay这样的查找树.于是最近刚学了学了点S ...
- LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘
The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and ex ...
- LSM Tree 学习笔记——MemTable通常用 SkipList 来实现
最近发现很多数据库都使用了 LSM Tree 的存储模型,包括 LevelDB,HBase,Google BigTable,Cassandra,InfluxDB 等.之前还没有留意这么设计的原因,最近 ...
随机推荐
- 批量下载,多文件压缩打包zip下载
0.写在前面的话 图片批量下载,要求下载时集成为一个压缩包进行下载.从昨天下午折腾到现在,踩坑踩得莫名其妙,还是来唠唠,给自己留个印象的同时,也希望给需要用到这个方法的人带来一些帮助. 1.先叨叨IO ...
- English_word_learning
这次报名参加了学院的21天打卡活动,说实话,也是想给自己一个积累的平台. 毕竟,真的有时候感觉挺弱的 有的人用了一年考完了四六级,而有人却用四年还未考完. 听到有一位学长因为自己的四级成绩没有达到48 ...
- 20155238 《JAVA程序设计》实验二(Java面向对象程序设计)实验报告
实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验要求 1.没有Linux基础的同学建议先学习<L ...
- tf tensor 输出
在学习TensorFlow的过程中,我们需要知道某个tensor的值是什么,这个很重要,尤其是在debug的时候.也许你会说,这个很容易啊,直接print就可以了.其实不然,print只能打印输出sh ...
- Git配置用户名与邮箱
1.用户名和邮箱地址的作用 用户名和邮箱地址是本地git客户端的一个变量 每次commit都会用用户名和邮箱纪录. github的contributions统计就是按邮箱来统计的. 2.查看用户名和邮 ...
- maven核心,pom.xml详解
什么是pom? pom作为项目对象模型.通过xml表示maven项目,使用pom.xml来实现.主要描述了项目:包括配置文件:开发者需要遵循的规则,缺陷管理系统,组织和licenses,项目的u ...
- MVC5.0知识点梳理
我们在使用MVC的时候或许总是在使用着自己一直熟悉的知识点去实现已有的功能,多梳理一些知识点让每种功能的实现方式可以多样化. 我们在开发小型系统时总是使用微软MVC的脚手架功能,比如路由可能就是使用了 ...
- .Net Core 分布式微服务框架介绍 - Jimu
系列文章 .Net Core 分布式微服务框架介绍 - Jimu .Net Core 分布式微服务框架 - Jimu 添加 Swagger 支持 一.前言 近些年一直浸淫在 .Net 平台做企业应用开 ...
- HyperLedger/Fabric SDK使用Docker容器镜像快速部署上线
HyperLedger/Fabric SDK Docker Image 该项目在github上的地址是:https://github.com/aberic/fabric-sdk-container ( ...
- Macaca初体验-PC端(Python)
前言: Macaca 是一套面向用户端软件的测试解决方案,提供了自动化驱动,周边工具,集成方案.由阿里巴巴公司开源:http://macacajs.github.io/macaca/ 特点: 同时支持 ...