SP1043 GSS1
简单说就是带修的查询区间最大子段和,用线段树维护即可
对于每个区间,我们肯定要记录它的最大子段和\(v\),但是怎么维护呢?
我们可以记录下从区间左端点开始的最大子段和\(v1\),从右端点开始的最大子段和\(v2\)以及区间和\(sum\)
那么\(t[p].sum=t[lc].sum+t[rc].sum\)
\(t[p].v1=max(t[lc].v1,t[lc].sum+t[rc].v1)\)
\(t[p].v2=max(t[rc].v 2,t[rc].sum+t[lc].v2)\)
\(t[p].v=max(t[lc].v2+t[rc].v1,t[lc].v,t[rc].v)\)
正确性应该很显然不需要再给出证明了吧
下放代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc getchar
#define maxn 50005
using namespace std;
inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}int n,m;
struct ahaha{
int v,v1,v2,sum;
}t[maxn<<2];
#define lc p<<1
#define rc p<<1|1
inline void pushup(int p){
t[p].sum=t[lc].sum+t[rc].sum;
t[p].v1=max(t[lc].v1,t[lc].sum+t[rc].v1);
t[p].v2=max(t[rc].v2,t[rc].sum+t[lc].v2);
t[p].v=max(t[lc].v2+t[rc].v1,max(t[lc].v,t[rc].v));
}
void build(int p,int l,int r){
if(l==r){t[p].v=t[p].v1=t[p].v2=t[p].sum=read();return;}
int m=l+r>>1;
build(lc,l,m);build(rc,m+1,r);
pushup(p);
}
ahaha query(int p,int l,int r,int L,int R){
if(l>R||r<L)return {-214748,-214748,-214748,-214748};
if(L<=l&&r<=R)return t[p];
int m=l+r>>1;
ahaha l1=query(lc,l,m,L,R),r1=query(rc,m+1,r,L,R),i;
i.sum=l1.sum+r1.sum;
i.v1=max(l1.v1,l1.sum+r1.v1);
i.v2=max(r1.v2,r1.sum+l1.v2);
i.v=max(l1.v2+r1.v1,max(l1.v,r1.v));
return i;
}
inline void solve(){
int x=read(),y=read();
printf("%d\n",query(1,1,n,x,y).v);
}
int main(){
n=read();
build(1,1,n);
m=read();
while(m--)
solve();
return 0;
}
SP1043 GSS1的更多相关文章
- 线段树 SP1043 GSS1 - Can you answer these queries I
SP1043 GSS1 - Can you answer these queries I 题目描述 给出了序列A[1],A[2],-,A[N]. (a[i]≤15007,1≤N≤50000).查询定义 ...
- 解题报告:SP1043 GSS1
题目链接:SP1043 GSS1 - Can you answer these queries I 对,\(GSS\)毒瘤数据结构题,就是我在这篇文章中提到的紫题. 相对其他\(GSS\)题简单些,但 ...
- [SP1043] GSS1 - Can you answer these queries I
传送门:>Here< 题意:求区间最大子段和 $N \leq 50000$ 包括多组询问(不需要支持修改) 解题思路 线段树的一道好题 我们可以考虑,如果一组数据全部都是正数,那么问题等同 ...
- SP1043 GSS1 - Can you answer these queries I(线段树,区间最大子段和(静态))
题目描述 给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y} ...
- SP1043 GSS1 - Can you answer these queries I(猫树)
给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y}. 给定M ...
- SP1043 GSS1 - Can you answer these queries I 线段树
问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...
- 线段树【SP1043】GSS1 - Can you answer these queries I
Description 给出了序列\(A_1,A_2,-,A_n\). \(a_i \leq 15007,1 \leq n \leq 50000\).查询定义如下: 查询\((x,y)=max{a_i ...
- 题解【SP1043】 GSS1 - Can you answer these queries I
题目描述 You are given a sequence \(A_1, A_2, ..., A_n(|A_i|≤15007,1≤N≤50000)\). A query is defined as f ...
- 「SP1043」GSS1 - Can you answer these queries I
传送门 Luogu 解题思路 这题就是 GSS3 的一个退化版,不带修改操作的区间最大子段和,没什么好讲的. 细节注意事项 咕咕咕 参考代码 #include <algorithm> #i ...
随机推荐
- mac下载、破解、安装webstorm编辑器
1.进入webstorm官网 http://www.jetbrains.com/webstorm/,点击DOWNLOAD,开始下载webstorm安装包. untitled.png 2.开始安装 双击 ...
- 20155209 Exp5 MSF基础应用
Exp5 MSF基础应用 实验准备 在实验之前,上网搜集了很多有关Metasploit渗透测试的资料.对这次实验影响最大的是一篇最受欢迎的10个Metasploit模块和插件.排名第一位的是MSB-M ...
- # 2017-2018-2 20155319『网络对抗技术』Exp6:信息收集与漏洞扫描
2017-2018-2 20155319『网络对抗技术』Exp6:信息收集与漏洞扫描 实践内容 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.O ...
- CLR回收非托管资源
一.非托管资源 在<垃圾回收算法之引用计数算法>.<垃圾回收算法之引用跟踪算法>和<垃圾回收算法之引用跟踪算法>这3篇文章中,我们介绍了垃圾回收的一些基本概念和原理 ...
- Java技术——String类为什么是不可变的
0. 前言 如果一个对象,在它创建完成之后不能再改变它的状态,包括对象内的成员变量.基本数据类型的值等等.那么这个对象就是不可变的.众所周知String类就是不可变的.转载请注明出处为SEU_Ca ...
- Hadoop日记Day9---HDFS的java访问接口
一.搭建Hadoop 开发环境 我们在工作中写完的各种代码是在服务器中运行的,HDFS 的操作代码也不例外.在开发阶段,我们使用windows 下的eclipse 作为开发环境,访问运行在虚拟机中的H ...
- 【HNOI2016】矿区
题面 题解 知识引入 1. 平面图 一个图\(G=(V,E)\),若能将其画在平面上,且任意两条边的交点只能是\(G\)的顶点,则称\(G\)可嵌入平面,或称\(G\)是可平面的. 可平面图在平面上的 ...
- 解决 引入本地jar包后 maven无法编译的问题及部署war包缺失本地jar包的问题
参考:https://blog.csdn.net/wang864676212/article/details/82626922 pom.xml 引入 <plugin> <plugin ...
- HTML 脚本 (Script) 实例
1.JavaScript 使 HTML 页面具有更强的动态和交互性.HTML script 元素<script> 标签用于定义客户端脚本,比如 JavaScript. script 元素既 ...
- GPT & UEFI Install Windows7
安装介质以FAT或者FAT32分区安装介质添加UEFI支持文件(Windows7及其以前的系统,不支持UEFI启动) 从Windows8的安装文件中提取Bootmgfw.efi文件,重命名为BOOTX ...