\[f[1] = 0
\]

\[f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1)
\]

  • 然后发现后面这一块gcd的个数只可能是i的约数, 那么考虑枚举约数

\[f[i] = 1 + \frac{1}{m}\sum_{d | i} f[d] cnt(d, i)
\]

  • \(cnt(d, i)\)表示和[1,m]内与i的gcd为d的数字个数
  • 考虑这个东西能够怎么算, \(cnt(d, i)\)显然 等于 \(1\ \ to \ \ (m / d)\) 中 和(i / d)互质的数的个数, 后者是莫比乌斯反演的经典形式
  • 然后暴力就能过了
/*

*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#define ll long long
#define M 100010
#define mmp make_pair
using namespace std;
const int mod = 1000000007; void add(int &x, int y)
{
x += y;
x -= x >= mod ? mod : 0;
x += x < 0 ? mod : 0;
} int mul(int a, int b)
{
return 1ll * a * b % mod;
} int poww(int a, int b)
{
int ans = 1, tmp = a;
for(; b; b >>= 1, tmp = mul(tmp, tmp)) if(b & 1) ans = mul(ans, tmp);
return ans;
} vector<int> to[M];
int f[M], mu[M], n, ans; int read()
{
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
} int main()
{
n = read();
mu[1] = 1;
for(int i = 1; i <= n; i++)
{
for(int j = i; j <= n; j += i)
{
to[j].push_back(i);
if(j != i) mu[j] -= mu[i];
}
}
for(int i = 1; i <= n; i++)
{
int p = n / i;
f[i] = mul(f[i] + p, poww(n - p, mod - 2));
add(ans, f[i] + 1);
for(int j = i + i; j <= n; j += i)
{
int d = j / i, s = 0;
for(int k = 0; k < to[d].size(); k++)
{
int v = to[d][k];
add(s, mul(mu[v], p / v));
}
add(f[j], mul(s, f[i] + 1));
}
}
ans = mul(ans, poww(n, mod - 2));
cout << ans << "\n"; return 0;
}

CF1139D Steps to One (莫比乌斯反演 期望dp)的更多相关文章

  1. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  2. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  3. Codeforces.1139D.Steps to One(DP 莫比乌斯反演)

    题目链接 啊啊啊我在干什么啊.怎么这么颓一道题做这么久.. 又记错莫比乌斯反演式子了(╯‵□′)╯︵┻━┻ \(Description\) 给定\(n\).有一个初始为空的集合\(S\).令\(g\) ...

  4. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  5. Codeforces - 1139D - Steps to One (概率DP+莫比乌斯反演)

    蒟蒻数学渣呀,根本不会做. 解法是参考 https://blog.csdn.net/xs18952904/article/details/88785210 这位大佬的. 状态的设计和转移如上面博客一样 ...

  6. codeforces#1139D. Steps to One (概率dp+莫比乌斯反演)

    题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时, ...

  7. CF809E Surprise me!(莫比乌斯反演+Dp(乱搞?))

    题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\) ...

  8. HDU4624 Endless Spin 【最大最小反演】【期望DP】

    题目分析: 题目是求$E(MAX_{i=1}^n(ai))$, 它等于$E(\sum_{s \subset S}{(-1)^{|s|-1}*min(s))} = \sum_{s \subset S}{ ...

  9. 题解-CF1139D Steps to One

    题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...

随机推荐

  1. [转]B树(多向平衡查找树)详解

    B-树是对2-3树数据结构的扩展.它支持对保存在磁盘或者网络上的符号表进行外部查找,这些文件可能比我们以前考虑的输入要大的多(以前的输入能够保存在内存中). (B树和B+树是实现数据库的数据结构,一般 ...

  2. 排序算法<No.2>【快速排序】

    最近因为项目需要,研究AI相关的东西,主要是算法相关的. 有感触,所以决定,来一个系列的博文,可能会耗时很久,那就是要完成算法系列.起点,从最常用最基本的排序开始.后续会跟进其他类型的,比如树,图等领 ...

  3. 魔豆love移植

    其中love.sh代码如下: #!/bin/sh if [ ! -f "$app_conf" ]; then echo url=http://modou.ydjiao.com/ap ...

  4. 使用PHPMAILER实现PHP发邮件功能

    第一步: 打开网址https://github.com/PHPMailer/PHPMailer/ 下载PHPMailer,PHPMailer 需要 PHP 的 sockets 扩展支持,而登录 QQ ...

  5. Thinkphp 缓存和静态缓存局部缓存设置

    1.S方法缓存设置 if(!$rows = S('indexBlog')){ //*$rows = S('indexBlog') $rows = D('blog')->select(); S(' ...

  6. JComboBox实现当前所选项功能和JFrame窗口释放资源的dispose()方法

    JComboBox有一个 SelectedItem属性,所以使用getSelectedItem()就可以得到当前选中值. package ltb20180106; import javax.swing ...

  7. 黄聪:JQUERY的datatables插件,Date range filter时间段筛选功能

    需配合moment插件实现:http://momentjs.com/ 演示:http://live.datatables.net/zuciyawi/1/edit HTML代码 <!DOCTYPE ...

  8. Java第07次实验提纲(异常)

    PTA与参考资料 题集:集合 异常实验文件 第1次实验 1.1 7-1 常用异常 如何进行强制转换.父类型转化为子类型常见错误. 如何捕获多种类型的异常 简要输出异常信息,System.out.pri ...

  9. 【maven】之打包war依赖子项目jar

    比如 p-common p-core p-dao p-service p-web service项目依赖dao,dao依赖core和common,web依赖service 在使用maven tomca ...

  10. Java知识之运算符篇

    运算符 算术运算符:+.-.*./ 和 %,两个整数相除,结果还是整数. 赋值运算符:=.+=.-=.*=./=.%=.&=.|=.~=.^=.<<=.>>= . &g ...