CF1139D Steps to One (莫比乌斯反演 期望dp)
\]
\]
- 然后发现后面这一块gcd的个数只可能是i的约数, 那么考虑枚举约数
\]
- \(cnt(d, i)\)表示和[1,m]内与i的gcd为d的数字个数
- 考虑这个东西能够怎么算, \(cnt(d, i)\)显然 等于 \(1\ \ to \ \ (m / d)\) 中 和(i / d)互质的数的个数, 后者是莫比乌斯反演的经典形式
- 然后暴力就能过了
/*
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#define ll long long
#define M 100010
#define mmp make_pair
using namespace std;
const int mod = 1000000007;
void add(int &x, int y)
{
x += y;
x -= x >= mod ? mod : 0;
x += x < 0 ? mod : 0;
}
int mul(int a, int b)
{
return 1ll * a * b % mod;
}
int poww(int a, int b)
{
int ans = 1, tmp = a;
for(; b; b >>= 1, tmp = mul(tmp, tmp)) if(b & 1) ans = mul(ans, tmp);
return ans;
}
vector<int> to[M];
int f[M], mu[M], n, ans;
int read()
{
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
int main()
{
n = read();
mu[1] = 1;
for(int i = 1; i <= n; i++)
{
for(int j = i; j <= n; j += i)
{
to[j].push_back(i);
if(j != i) mu[j] -= mu[i];
}
}
for(int i = 1; i <= n; i++)
{
int p = n / i;
f[i] = mul(f[i] + p, poww(n - p, mod - 2));
add(ans, f[i] + 1);
for(int j = i + i; j <= n; j += i)
{
int d = j / i, s = 0;
for(int k = 0; k < to[d].size(); k++)
{
int v = to[d][k];
add(s, mul(mu[v], p / v));
}
add(f[j], mul(s, f[i] + 1));
}
}
ans = mul(ans, poww(n, mod - 2));
cout << ans << "\n";
return 0;
}
CF1139D Steps to One (莫比乌斯反演 期望dp)的更多相关文章
- CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)
stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网 洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...
- CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】
反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...
- Codeforces.1139D.Steps to One(DP 莫比乌斯反演)
题目链接 啊啊啊我在干什么啊.怎么这么颓一道题做这么久.. 又记错莫比乌斯反演式子了(╯‵□′)╯︵┻━┻ \(Description\) 给定\(n\).有一个初始为空的集合\(S\).令\(g\) ...
- 【期望dp 质因数分解】cf1139D. Steps to One
有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...
- Codeforces - 1139D - Steps to One (概率DP+莫比乌斯反演)
蒟蒻数学渣呀,根本不会做. 解法是参考 https://blog.csdn.net/xs18952904/article/details/88785210 这位大佬的. 状态的设计和转移如上面博客一样 ...
- codeforces#1139D. Steps to One (概率dp+莫比乌斯反演)
题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时, ...
- CF809E Surprise me!(莫比乌斯反演+Dp(乱搞?))
题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\) ...
- HDU4624 Endless Spin 【最大最小反演】【期望DP】
题目分析: 题目是求$E(MAX_{i=1}^n(ai))$, 它等于$E(\sum_{s \subset S}{(-1)^{|s|-1}*min(s))} = \sum_{s \subset S}{ ...
- 题解-CF1139D Steps to One
题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...
随机推荐
- [转]B树(多向平衡查找树)详解
B-树是对2-3树数据结构的扩展.它支持对保存在磁盘或者网络上的符号表进行外部查找,这些文件可能比我们以前考虑的输入要大的多(以前的输入能够保存在内存中). (B树和B+树是实现数据库的数据结构,一般 ...
- 排序算法<No.2>【快速排序】
最近因为项目需要,研究AI相关的东西,主要是算法相关的. 有感触,所以决定,来一个系列的博文,可能会耗时很久,那就是要完成算法系列.起点,从最常用最基本的排序开始.后续会跟进其他类型的,比如树,图等领 ...
- 魔豆love移植
其中love.sh代码如下: #!/bin/sh if [ ! -f "$app_conf" ]; then echo url=http://modou.ydjiao.com/ap ...
- 使用PHPMAILER实现PHP发邮件功能
第一步: 打开网址https://github.com/PHPMailer/PHPMailer/ 下载PHPMailer,PHPMailer 需要 PHP 的 sockets 扩展支持,而登录 QQ ...
- Thinkphp 缓存和静态缓存局部缓存设置
1.S方法缓存设置 if(!$rows = S('indexBlog')){ //*$rows = S('indexBlog') $rows = D('blog')->select(); S(' ...
- JComboBox实现当前所选项功能和JFrame窗口释放资源的dispose()方法
JComboBox有一个 SelectedItem属性,所以使用getSelectedItem()就可以得到当前选中值. package ltb20180106; import javax.swing ...
- 黄聪:JQUERY的datatables插件,Date range filter时间段筛选功能
需配合moment插件实现:http://momentjs.com/ 演示:http://live.datatables.net/zuciyawi/1/edit HTML代码 <!DOCTYPE ...
- Java第07次实验提纲(异常)
PTA与参考资料 题集:集合 异常实验文件 第1次实验 1.1 7-1 常用异常 如何进行强制转换.父类型转化为子类型常见错误. 如何捕获多种类型的异常 简要输出异常信息,System.out.pri ...
- 【maven】之打包war依赖子项目jar
比如 p-common p-core p-dao p-service p-web service项目依赖dao,dao依赖core和common,web依赖service 在使用maven tomca ...
- Java知识之运算符篇
运算符 算术运算符:+.-.*./ 和 %,两个整数相除,结果还是整数. 赋值运算符:=.+=.-=.*=./=.%=.&=.|=.~=.^=.<<=.>>= . &g ...