import os
import tab
import tensorflow as tf
from numpy.random import RandomState
print "hello tensorflow 4.1" batch_size = 8 x = tf.placeholder(tf.float32,shape=(None,2),name='x-input')
y_ = tf.placeholder(tf.float32,shape=(None,1),name='y-input') w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
#w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
y = tf.matmul(x,w1) #a = tf.matmul(x,w1)
#y = tf.matmul(a,w2) loss_less = 10
loss_more = 1
loss = tf.reduce_sum(tf.where(tf.greater(y,y_),(y-y_)*loss_more,(y_-y)*loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size,2)
Y = [[x1 + x2 +rdm.rand()/10.0-0.05] for (x1 ,x2 ) in X] with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
print sess.run(w1)
STEPS = 5000
for i in range(STEPS):
start = (i * batch_size) % dataset_size
end = min(start+batch_size,dataset_size)
sess.run(train_step, feed_dict = {x: X[start:end], y_: Y[start:end]} )
print sess.run(w1) print "end "

  

Tensorflow%20实战Google深度学习框架 4.2.2 自定义损失函数源代码的更多相关文章

  1. tensorflow:实战Google深度学习框架第四章01损失函数

    深度学习:两个重要特性:多层和非线性 线性模型:任意线性模型的组合都是线性模型,只通过线性变换任意层的全连接神经网络与单层神经网络没有区别. 激活函数:能够实现去线性化(神经元的输出通过一个非线性函数 ...

  2. Reading | 《TensorFlow:实战Google深度学习框架》

    目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...

  3. 【书评】【不推荐】《TensorFlow:实战Google深度学习框架》(第2版)

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 这本书我老老实实从头到尾看了一遍(实际上是看到第9章,刚看完,后面的实在看不下去了,但还是会坚持看的),所有的代码 ...

  4. tensorflow:实战Google深度学习框架第三章

    tensorflow的计算模型:计算图–tf.Graph tensorflow的数据模型:张量–tf.Tensor tensorflow的运行模型:会话–tf.Session tensorflow可视 ...

  5. tensorflow:实战Google深度学习框架第四章02神经网络优化(学习率,避免过拟合,滑动平均模型)

    1.学习率的设置既不能太小,又不能太大,解决方法:使用指数衰减法 例如: 假设我们要最小化函数 y=x2y=x2, 选择初始点 x0=5x0=5  1. 学习率为1的时候,x在5和-5之间震荡. im ...

  6. 学习《TensorFlow实战Google深度学习框架 (第2版) 》中文PDF和代码

    TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速. ...

  7. [Tensorflow实战Google深度学习框架]笔记4

    本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 ...

  8. 1 如何使用pb文件保存和恢复模型进行迁移学习(学习Tensorflow 实战google深度学习框架)

    学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https:/ ...

  9. TensorFlow+实战Google深度学习框架学习笔记(5)----神经网络训练步骤

    一.TensorFlow实战Google深度学习框架学习 1.步骤: 1.定义神经网络的结构和前向传播的输出结果. 2.定义损失函数以及选择反向传播优化的算法. 3.生成会话(session)并且在训 ...

随机推荐

  1. 建议 for 语句的循环控制变量的取值采用“半开半闭区间”写法

    建议 for 语句的循环控制变量的取值采用“半开半闭区间”写法. #include <iostream> /* run this program using the console pau ...

  2. 访问GitLab的PostgreSQL数据库

    1.登陆gitlab的安装服务查看配置文件 cat /var/opt/gitlab/gitlab-rails/etc/database.yml production: adapter: postgre ...

  3. HBase原理、基本概念、基本架构-3

    HBase是Apache Hadoop的数据库,能够对大型数据提供随机.实时的读写访问.HBase的目标是存储并处理大型的数据.HBase是一个开源的,分布式的,多版本的,面向列的存储模型.它存储的是 ...

  4. delphi程序热键

    要定义一个全局热键,通常有三个步骤:      1.定义Windows的消息WM_HOTKEY的HOOK链,即            procedure MyShortCut(Var Message: ...

  5. VC实现波形不闪烁动态绘图 .

    http://blog.csdn.net/xuyongbeijing2008/article/details/8064284 源代码:http://www.vckbase.com/index.php/ ...

  6. 如何在浏览器控制台(console)里输出彩色样式调试信息

    console.log(XX,XX,XX) log 的第一个参数声明第二.第三个参数的作用,第二个参数就是样式,第三个参数是要输出的字符串 console.log("%c%s", ...

  7. centos7下git的使用和配置

    1.下载git,使用命令: yum install git 2.配置git: git config --global user.name "Your Name" git confi ...

  8. mongoDB在windows64上安装

    1.下载64位:mongodb-win32-x86_64-enterprise-windows-64-2.6.4-signed.msi 2.安装目录:将应用安装到此目录下面:C:\MongoDB\ 3 ...

  9. Hessain 方法重载

     在相应的配置文件里面加上这句话. <property name="overloadEnable" value="true"></proper ...

  10. MQTT的学习研究(一)MQTT学习网站

    MQTT的官方推荐网站: http://mqtt.org/software 使用IBM 的MQTT协议实现push消息地址: http://tokudu.com/2010/how-to-impleme ...