51nod 1040 最大公约数的和 欧拉函数
1个数N(N <= 10^9)
公约数之和
6
15
思路:欧拉函数(可能好久没写欧拉,有点忘了);
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 1000000009
#define inf 999999999
#define esp 0.00000000001
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int phi(int n)
{
int i,rea=n;
for(i=;i*i<=n;i++)
{
if(n%i==)
{
rea=rea-rea/i;
while(n%i==) n/=i;
}
}
if(n>)
rea=rea-rea/n;
return rea;
}
int main()
{
int x,y,z,i,t;
while(~scanf("%d",&x))
{
ll ans=;
for(i=;i*i<=x;i++)
{
if(x%i==)
{
if(i*i!=x)
ans+=x/i*phi(i);
ans+=i*phi(x/i);
}
}
printf("%lld\n",ans);
}
return ;
}
51nod 1040 最大公约数的和 欧拉函数的更多相关文章
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- 51nod 1040最大公约数和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...
- 【51Nod 1363】最小公倍数之和(欧拉函数)
题面 传送门 题解 拿到式子的第一步就是推倒 \[ \begin{align} \sum_{i=1}^nlcm(n,i) &=\sum_{i=1}^n\frac{in}{\gcd(i,n)}\ ...
- 洛谷$P1390$ 公约数的和 欧拉函数
正解:欧拉函数 解题报告: 传送门$QwQ$ 首先显然十分套路地变下形是趴 $\begin{align*}&=\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)\\&= ...
- 51nod1040最大公约数之和(欧拉函数)
题面 传送门 题解 这种题目就是推倒推倒 \[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^n[\gcd(j,n)=i]\] \[\sum_{i=1}^n ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- HDOJ 1787 GCD Again(欧拉函数)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 欧拉函数:HDU1787-GCD Again(欧拉函数的模板)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
随机推荐
- HUB、SPAN、TAP比较
在获取数据包进行网络分析时,常用的方法有三种:HUB.SPAN和TAP. 一 HUB HUB 很“弱智”,但这种方法却是最早的数据包获取方法.HUB是半双工的以太网设备,在广播数据包时,无法同时 ...
- Asp SqlDataSource将数据库数据绑定在 GridView
1.首先认识一下GridView的几条属性 ☻AllowPaging 确定是否可以分页 ☻AllowSorting 确定是否可以进行排序 ☻AlternatingRowStyle 指定奇数行样式 ...
- SMGP关键代码
从网上下载java的API就可以开发了我们需要修改的类是: import java.io.IOException; import cn.com.zjtelecom.smgp.Client; impor ...
- onethink插件控制器如何访问?
具体路由分析就不说啦!就是那样.这里我只是方便访问来做一个记录,方便复制粘贴访问: 例如:新增一个Baoming的插件: 那么如何,访问这个控制里面方法呢? 第一种情况:这个控制器使用的是Admin模 ...
- pta 习题集 5-5 最长连续递增子序列 (dp)
给定一个顺序存储的线性表,请设计一个算法查找该线性表中最长的连续递增子序列.例如,(1,9,2,5,7,3,4,6,8,0)中最长的递增子序列为(3,4,6,8). 输入格式: 输入第1行给出正整数n ...
- mysql db imported into mongodb
desc cwd_user show columns from cwd_user select COLUMN_NAME from information_schema.columns where ta ...
- toml-lang - Tom's Obvious, Minimal Language
Tom's Obvious, Minimal Languagehttps://github.com/toml-lang/toml
- 双态运维联盟(BOA)正式成立
3月1日,由联想.新华三.华为等12家IT企业在北京正式达成协议,联合发起成立“双态运维联盟”.中国电子工业标准技术协会.信息技术服务分会数据中心运营管理工作组(DCMG)组长肖建一先生出席了会议. ...
- python网络编程知识体系
python的网络编程包括: 1.mvc-socket-线程-进程-并发-IO异步-消费者生产者 2.mysql-paramiko-审计堡垒机-redis-分布式监控 线程.进程 和 协程 原理剖析 ...
- day08:软件系统的体系结构&Tomcat详解&Web应用&http协议
day08 软件系统体系结构 常见软件系统体系结构B/S.C/S 1.1 C/S C/S结构即客户端/服务器(Client/Server),例如QQ: 需要编写服务器端程序,以及客户端 ...