【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT
给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林;询问一个点能到达的最远的点与该点的距离。强制在线。
$n\le 3\times 10^5$ ,$m\le 5\times 10^5$ 。
题解
树的直径+并查集+LCT
与直径相关的结论1:与一个点距离最大的点为任意一条直径的两个端点之一。
与直径相关的结论2:两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二。
于是问题就变简单了,用并查集维护每个连通块的直径即可。由于强制在线,所以必须用LCT维护树上距离。
时间复杂度 $O(LCT·n\log n)=O(能过)$
#include <cstdio>
#include <algorithm>
#define N 300010
using namespace std;
int f[N] , px[N] , py[N] , fa[N] , c[2][N] , si[N] , rev[N];
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
inline void pushup(int x)
{
si[x] = si[c[0][x]] + si[c[1][x]] + 1;
}
inline void pushdown(int x)
{
if(rev[x])
{
swap(c[0][c[0][x]] , c[1][c[0][x]]) , rev[c[0][x]] ^= 1;
swap(c[0][c[1][x]] , c[1][c[1][x]]) , rev[c[1][x]] ^= 1;
rev[x] = 0;
}
}
inline bool isroot(int x)
{
return x != c[0][fa[x]] && x != c[1][fa[x]];
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
inline void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
inline void splay(int x)
{
int y , z;
update(x);
while(!isroot(x))
{
y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline void access(int x)
{
int t = 0;
while(x) splay(x) , c[1][x] = t , pushup(x) , t = x , x = fa[x];
}
inline void makeroot(int x)
{
access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] ^= 1;
}
inline int dis(int x , int y)
{
makeroot(x) , access(y) , splay(y);
return si[y];
}
inline void link(int x , int y)
{
int tx = find(x) , ty = find(y) , mx = -1 , t , rx , ry;
makeroot(x) , fa[x] = y;
if(mx < (t = dis(px[tx] , py[tx]))) mx = t , rx = px[tx] , ry = py[tx];
if(mx < (t = dis(px[ty] , py[ty]))) mx = t , rx = px[ty] , ry = py[ty];
if(mx < (t = dis(px[tx] , px[ty]))) mx = t , rx = px[tx] , ry = px[ty];
if(mx < (t = dis(px[tx] , py[ty]))) mx = t , rx = px[tx] , ry = py[ty];
if(mx < (t = dis(py[tx] , px[ty]))) mx = t , rx = py[tx] , ry = px[ty];
if(mx < (t = dis(py[tx] , py[ty]))) mx = t , rx = py[tx] , ry = py[ty];
f[tx] = ty , px[ty] = rx , py[ty] = ry;
}
int main()
{
int type , n , q , i , opt , x , y , ans = 0;
scanf("%d%d%d" , &type , &n , &q);
for(i = 1 ; i <= n ; i ++ ) f[i] = px[i] = py[i] = i , si[i] = 1;
while(q -- )
{
scanf("%d%d" , &opt , &x) , x ^= ans;
if(opt == 1) scanf("%d" , &y) , y ^= ans , link(x , y);
else y = find(x) , printf("%d\n" , ans = max(dis(x , px[y]) , dis(x , py[y])) - 1);
if(!type) ans = 0;
}
return 0;
}
【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT的更多相关文章
- loj6038「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT
题目传送门 https://loj.ac/problem/6038 题解 根据树的直径的两个性质: 距离树上一个点最远的点一定是任意一条直径的一个端点. 两个联通块的并的直径是各自的联通块的两条直径的 ...
- [loj6038]「雅礼集训 2017 Day5」远行 lct+并查集
给你 n 个点,支持 m 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. n≤3×10^5 n≤3×10^5 ,m≤5×10^5 m≤5 ...
- LOJ#6038. 「雅礼集训 2017 Day5」远行(LCT)
题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之 ...
- 【刷题】LOJ 6038 「雅礼集训 2017 Day5」远行
题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多 ...
- 「雅礼集训 2017 Day5」远行
题目链接 问题分析 要求树上最远距离,很显然就想到了树的直径.关于树的直径,有下面几个结论: 如果一棵树的直径两个端点为\(a,b\),那么树上一个点\(v\)开始的最长路径是\(v\rightarr ...
- loj#6038 「雅礼集训 2017 Day5」远行
分析 代码 #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define ...
- LOJ#6038. 「雅礼集训 2017 Day5」远行 [LCT维护子树的直径]
树的直径一定是原联通块4个里的组合 1.LCT,维护树的直径,这题就做完了 2.直接倍增,lca啥的求求距离,也可以吧- // powered by c++11 // by Isaunoya #inc ...
- 「雅礼集训 2017 Day5」珠宝
题目描述 Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右 ...
- 「雅礼集训 2017 Day5」矩阵
填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表 ...
随机推荐
- 20155323 2016-2017-2 《Java程序设计》第2周学习总结
20155323 2016-2017-2 <Java程序设计>第2周学习总结 教材学习内容总结 对象:对象是类的一个实例,有状态和行为. 类:类是一个模板,它描述一类对象的行为和状态. 第 ...
- [BZOJ2127]happiness-[网络流-最小割]
Description 传送门 Solution 按照最小割的思路考虑. 根据题意,当两个人都选文(理),需要砍掉两个人都选理(文)的加成:如果两个人选的不一样,就要都砍掉. 这是一个网络流建模的套路 ...
- 成都Uber优步司机奖励政策(4月18日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Python 爬虫之模拟登录
最近应朋友要求,帮忙爬取了小红书创作平台的数据,感觉整个过程很有意思,因此记录一下.在这之前自己没怎么爬过需要账户登录的网站数据,所以刚开始去看小红书的登录认证时一头雾水,等到一步步走下来,最终成功, ...
- device_create与device_register
//device_create的定义如下 struct device *device_create(struct class *class, struct device *parent, dev_t ...
- 前端--javaScript之简单介绍
一.javaScript(以下简称js)的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEase.(客户端 ...
- TW实习日记:第五天
今天可以说是非常忙的一天了,要再项目中实现微信相关的功能:授权登录以及扫码登录,还有就是自建应用的发送消息.首先功能代码其实在经过了几天的学习之后并没有很难,但是最让我难受的是在项目中去加代码,首先s ...
- Paper Reading - Im2Text: Describing Images Using 1 Million Captioned Photographs ( NIPS 2011 )
Link of the Paper: http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captio ...
- Javascript中Generator(生成器)
阅读目录 Generator的使用: yield yield* next()方法 next()方法的参数 throw方法() return()方法: Generator中的this和他的原型 实际使用 ...
- 1.airflow的安装
1.环境准备1.1 安装环境1.2 创建用户2.安装airflow2.1 安装python2.2 安装pip2.3 安装数据库2.4 安装airflow2.4.1 安装主模块2.4.2 安装数据库模块 ...