题目描述

给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林;询问一个点能到达的最远的点与该点的距离。强制在线。

$n\le 3\times 10^5$ ,$m\le 5\times 10^5$ 。


题解

树的直径+并查集+LCT

与直径相关的结论1:与一个点距离最大的点为任意一条直径的两个端点之一。

与直径相关的结论2:两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二。

于是问题就变简单了,用并查集维护每个连通块的直径即可。由于强制在线,所以必须用LCT维护树上距离。

时间复杂度 $O(LCT·n\log n)=O(能过)$

#include <cstdio>
#include <algorithm>
#define N 300010
using namespace std;
int f[N] , px[N] , py[N] , fa[N] , c[2][N] , si[N] , rev[N];
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
inline void pushup(int x)
{
si[x] = si[c[0][x]] + si[c[1][x]] + 1;
}
inline void pushdown(int x)
{
if(rev[x])
{
swap(c[0][c[0][x]] , c[1][c[0][x]]) , rev[c[0][x]] ^= 1;
swap(c[0][c[1][x]] , c[1][c[1][x]]) , rev[c[1][x]] ^= 1;
rev[x] = 0;
}
}
inline bool isroot(int x)
{
return x != c[0][fa[x]] && x != c[1][fa[x]];
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
inline void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
inline void splay(int x)
{
int y , z;
update(x);
while(!isroot(x))
{
y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline void access(int x)
{
int t = 0;
while(x) splay(x) , c[1][x] = t , pushup(x) , t = x , x = fa[x];
}
inline void makeroot(int x)
{
access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] ^= 1;
}
inline int dis(int x , int y)
{
makeroot(x) , access(y) , splay(y);
return si[y];
}
inline void link(int x , int y)
{
int tx = find(x) , ty = find(y) , mx = -1 , t , rx , ry;
makeroot(x) , fa[x] = y;
if(mx < (t = dis(px[tx] , py[tx]))) mx = t , rx = px[tx] , ry = py[tx];
if(mx < (t = dis(px[ty] , py[ty]))) mx = t , rx = px[ty] , ry = py[ty];
if(mx < (t = dis(px[tx] , px[ty]))) mx = t , rx = px[tx] , ry = px[ty];
if(mx < (t = dis(px[tx] , py[ty]))) mx = t , rx = px[tx] , ry = py[ty];
if(mx < (t = dis(py[tx] , px[ty]))) mx = t , rx = py[tx] , ry = px[ty];
if(mx < (t = dis(py[tx] , py[ty]))) mx = t , rx = py[tx] , ry = py[ty];
f[tx] = ty , px[ty] = rx , py[ty] = ry;
}
int main()
{
int type , n , q , i , opt , x , y , ans = 0;
scanf("%d%d%d" , &type , &n , &q);
for(i = 1 ; i <= n ; i ++ ) f[i] = px[i] = py[i] = i , si[i] = 1;
while(q -- )
{
scanf("%d%d" , &opt , &x) , x ^= ans;
if(opt == 1) scanf("%d" , &y) , y ^= ans , link(x , y);
else y = find(x) , printf("%d\n" , ans = max(dis(x , px[y]) , dis(x , py[y])) - 1);
if(!type) ans = 0;
}
return 0;
}

【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT的更多相关文章

  1. loj6038「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT

    题目传送门 https://loj.ac/problem/6038 题解 根据树的直径的两个性质: 距离树上一个点最远的点一定是任意一条直径的一个端点. 两个联通块的并的直径是各自的联通块的两条直径的 ...

  2. [loj6038]「雅礼集训 2017 Day5」远行 lct+并查集

    给你 n 个点,支持 m 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. n≤3×10^5 n≤3×10^5 ,m≤5×10^5 m≤5 ...

  3. LOJ#6038. 「雅礼集训 2017 Day5」远行(LCT)

    题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之 ...

  4. 【刷题】LOJ 6038 「雅礼集训 2017 Day5」远行

    题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多 ...

  5. 「雅礼集训 2017 Day5」远行

    题目链接 问题分析 要求树上最远距离,很显然就想到了树的直径.关于树的直径,有下面几个结论: 如果一棵树的直径两个端点为\(a,b\),那么树上一个点\(v\)开始的最长路径是\(v\rightarr ...

  6. loj#6038 「雅礼集训 2017 Day5」远行

    分析 代码 #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define ...

  7. LOJ#6038. 「雅礼集训 2017 Day5」远行 [LCT维护子树的直径]

    树的直径一定是原联通块4个里的组合 1.LCT,维护树的直径,这题就做完了 2.直接倍增,lca啥的求求距离,也可以吧- // powered by c++11 // by Isaunoya #inc ...

  8. 「雅礼集训 2017 Day5」珠宝

    题目描述 Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右 ...

  9. 「雅礼集训 2017 Day5」矩阵

    填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表 ...

随机推荐

  1. WPF MVVM从入门到精通1:MVVM模式简介

    原文:WPF MVVM从入门到精通1:MVVM模式简介 WPF MVVM从入门到精通1:MVVM模式简介 WPF MVVM从入门到精通2:实现一个登录窗口 WPF MVVM从入门到精通3:数据绑定 W ...

  2. [MYSQL]练习(一)

    本文转载自:http://www.cnblogs.com/DreamDrive/p/6193530.html 我只是想做一个自己的运维知识库,所以迫不得已做了搬运工 建表 DROP TABLE DEP ...

  3. Atom 插件 Sync Settings 备份与恢复

    当使用 Atom IDEA.随着使用的越来越多,安装的插件也越来越多,一旦电脑重装后需要复原开发环境,这将是一件比较头疼的事.「Sync Settings」插件可以帮助我们解决这个问题. 操作流程 安 ...

  4. Dsniff简介

    原文发表于:2010-09-25 转载至cu于:2012-07-21 前两天因为看局域网安全的视频中介绍dsniff,也想自己安装下来看看效果.简单的使用没什么难的(高级使用就需要研究文档了),但是安 ...

  5. 【python 3.6】xlwt和xlrd对excel的读写操作

    #python 3.6 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'BH8ANK' import xlrd '''====== ...

  6. vs2017搭建linux c++开发环境

    最近一直在阅读ovs的源码,看到用户态代码的时候,需要对用户态的代码进行调试,一开始想直接使用linux中的GDB进行调试,但是ovs的工程太过于复杂,从网上找了些文章,发现vs2017能够支持lin ...

  7. loadrunner之analysis详解

    本文原出处:http://blog.csdn.net/lykangjia/article/details/56009750 一.常用到的性能测试术语 1.事务(Transaction) 在web性能测 ...

  8. 提升Android ListView性能的几个技巧

    ListView如何运作的? ListView是设计应用于对可扩展性和高性能要求的地方.实际上,这就意味着ListView有以下2个要求: 尽可能少的创建View: 只是绘制和布局在屏幕上可见的子Vi ...

  9. 个人第十一周PSP

    11.24 --11.30本周例行报告 1.PSP(personal software process )个人软件过程. 类型 任务 开始时间                结束时间 中断时间 实际用 ...

  10. 漫漫征途,java开发(未完待续)

    前言 2018年,大二上,有幸加入服务外包实验室的考核,在考核中,主动加入xxx项目的后端,一是为了积累项目经验,二是为了学到更多东西,进入了之后发现原来要学的这么多,时间这么紧!但唯有学习! 心得体 ...