题目描述

给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林;询问一个点能到达的最远的点与该点的距离。强制在线。

$n\le 3\times 10^5$ ,$m\le 5\times 10^5$ 。


题解

树的直径+并查集+LCT

与直径相关的结论1:与一个点距离最大的点为任意一条直径的两个端点之一。

与直径相关的结论2:两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二。

于是问题就变简单了,用并查集维护每个连通块的直径即可。由于强制在线,所以必须用LCT维护树上距离。

时间复杂度 $O(LCT·n\log n)=O(能过)$

#include <cstdio>
#include <algorithm>
#define N 300010
using namespace std;
int f[N] , px[N] , py[N] , fa[N] , c[2][N] , si[N] , rev[N];
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
inline void pushup(int x)
{
si[x] = si[c[0][x]] + si[c[1][x]] + 1;
}
inline void pushdown(int x)
{
if(rev[x])
{
swap(c[0][c[0][x]] , c[1][c[0][x]]) , rev[c[0][x]] ^= 1;
swap(c[0][c[1][x]] , c[1][c[1][x]]) , rev[c[1][x]] ^= 1;
rev[x] = 0;
}
}
inline bool isroot(int x)
{
return x != c[0][fa[x]] && x != c[1][fa[x]];
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
inline void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
inline void splay(int x)
{
int y , z;
update(x);
while(!isroot(x))
{
y = fa[x] , z = fa[y];
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline void access(int x)
{
int t = 0;
while(x) splay(x) , c[1][x] = t , pushup(x) , t = x , x = fa[x];
}
inline void makeroot(int x)
{
access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] ^= 1;
}
inline int dis(int x , int y)
{
makeroot(x) , access(y) , splay(y);
return si[y];
}
inline void link(int x , int y)
{
int tx = find(x) , ty = find(y) , mx = -1 , t , rx , ry;
makeroot(x) , fa[x] = y;
if(mx < (t = dis(px[tx] , py[tx]))) mx = t , rx = px[tx] , ry = py[tx];
if(mx < (t = dis(px[ty] , py[ty]))) mx = t , rx = px[ty] , ry = py[ty];
if(mx < (t = dis(px[tx] , px[ty]))) mx = t , rx = px[tx] , ry = px[ty];
if(mx < (t = dis(px[tx] , py[ty]))) mx = t , rx = px[tx] , ry = py[ty];
if(mx < (t = dis(py[tx] , px[ty]))) mx = t , rx = py[tx] , ry = px[ty];
if(mx < (t = dis(py[tx] , py[ty]))) mx = t , rx = py[tx] , ry = py[ty];
f[tx] = ty , px[ty] = rx , py[ty] = ry;
}
int main()
{
int type , n , q , i , opt , x , y , ans = 0;
scanf("%d%d%d" , &type , &n , &q);
for(i = 1 ; i <= n ; i ++ ) f[i] = px[i] = py[i] = i , si[i] = 1;
while(q -- )
{
scanf("%d%d" , &opt , &x) , x ^= ans;
if(opt == 1) scanf("%d" , &y) , y ^= ans , link(x , y);
else y = find(x) , printf("%d\n" , ans = max(dis(x , px[y]) , dis(x , py[y])) - 1);
if(!type) ans = 0;
}
return 0;
}

【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT的更多相关文章

  1. loj6038「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT

    题目传送门 https://loj.ac/problem/6038 题解 根据树的直径的两个性质: 距离树上一个点最远的点一定是任意一条直径的一个端点. 两个联通块的并的直径是各自的联通块的两条直径的 ...

  2. [loj6038]「雅礼集训 2017 Day5」远行 lct+并查集

    给你 n 个点,支持 m 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. n≤3×10^5 n≤3×10^5 ,m≤5×10^5 m≤5 ...

  3. LOJ#6038. 「雅礼集训 2017 Day5」远行(LCT)

    题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之 ...

  4. 【刷题】LOJ 6038 「雅礼集训 2017 Day5」远行

    题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多 ...

  5. 「雅礼集训 2017 Day5」远行

    题目链接 问题分析 要求树上最远距离,很显然就想到了树的直径.关于树的直径,有下面几个结论: 如果一棵树的直径两个端点为\(a,b\),那么树上一个点\(v\)开始的最长路径是\(v\rightarr ...

  6. loj#6038 「雅礼集训 2017 Day5」远行

    分析 代码 #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define ...

  7. LOJ#6038. 「雅礼集训 2017 Day5」远行 [LCT维护子树的直径]

    树的直径一定是原联通块4个里的组合 1.LCT,维护树的直径,这题就做完了 2.直接倍增,lca啥的求求距离,也可以吧- // powered by c++11 // by Isaunoya #inc ...

  8. 「雅礼集训 2017 Day5」珠宝

    题目描述 Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右 ...

  9. 「雅礼集训 2017 Day5」矩阵

    填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表 ...

随机推荐

  1. 2017-2018-1 20155330《信息安全技术》实验二——Windows口令破解

    2017-2018-1 20155330<信息安全技术>实验二--Windows口令破解 姓名:朱玥 学号:20155330 班级:201553 日期:2017.10.24 实验环境 系统 ...

  2. pgpool-II的master-slave模式的分析

    磨砺技术珠矶,践行数据之道,追求卓越价值 回到上一级页面: PostgreSQL集群方案相关索引页     回到顶级页面:PostgreSQL索引页 现象描述: 客户来邮件,问:为何Pgpool-II ...

  3. springboot+security+JWT实现单点登录

    本次整合实现的目标:1.SSO单点登录2.基于角色和spring security注解的权限控制. 整合过程如下: 1.使用maven构建项目,加入先关依赖,pom.xml如下: <?xml v ...

  4. python-模块详解

    模块: 模块的分类: 第三方模块/扩展模块:没在安装python解释器的时候安装的那些功能 自定义模块:你写的功能如果是一个通用的功能,那你就把它当做一个模块 内置模块:安装python解释器的时候跟 ...

  5. 使用Git提交与管理代码

    要成为一个合格的码农,必须要有效对自己的代码进行管理,最近打算有空就整理一下自己以前写得代码,把不涉及实验室的机密的内容等放到github上,之前只知道git clone 别人的代码,希望有一天自己的 ...

  6. const与readonly常量

    const与readonly常量 const与readonly都是用来定义常量,但是它们有什么区别呢? 下面我们来简要的说明一下: const修饰的常量是编译时常量,如:public const St ...

  7. Jupyter 安装并配置工作路径[转]

    1.通过python的pip方式安装jupyterpython和pip都安装好后,通过cmd进入命令提示窗口,找到python安装目录下的Script目录,例如我的是路径是:C:\Program Fi ...

  8. TW实习日记:第六天

    今日的一整天都是在开发微信相关的接口,因为项目的系统是嵌在企业微信中,所以不可避免的要产生微信UserID和企业系统ID的匹配关系,那么就需要用手机号或是邮箱这种两边都存在的唯一参数进行匹配.然后再将 ...

  9. mysql 无法启动,错误1067,进程意外终止

    在做项目启动mysql数据库时,经常出现 这个错误,今天总结一下 //查看了网上很多的方法,都不适用,但或许对你适用.ps:网上只提供了怎么解决这个问题,但是没有将怎么去发现问题,对症下药才是王道.而 ...

  10. Kafka安装之二 在CentOS 7上安装Kafka

    一.简介 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这 ...