Tips on Probability Theory
1、独立与不相关
随机变量X和Y相互独立,有:E(XY) = E(X)E(Y)。
独立一定不相关,不相关不一定独立(高斯过程里二者等价) 。对于均值为零的高斯随机变量,“独立”和“不相关”等价的。
独立性是指两个变量的发生概率一点关系没有,而相关性通常是指线性关系。如果两个变量不相关,指的是线性关系里不相关,但是不能说它们没有关系,可能是线性以外的其他关系。
2、中心极限定理和强、弱大数定律
中心极限定理和强、弱大数定律是概率论的核心,历史悠久(不晚于1733年)。
大数定律讲的是样本均值收敛到总体均值(就是期望)。即如果统计数据足够大,那么事物出现的频率就能无限接近他的期望值。
小数定律是说,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。
中心极限定理告诉我们:大量独立同分布随机变量之和满足高斯分布,即当样本量足够大时,样本均值的分布慢慢变成正态分布。
即样本的平均值约等于总体的平均值。不管总体是什么分布,任意一个总体的样本平均值都会围绕在总体的整体平均值周围,并且呈正态分布。
中心极限定理有很多版本,最常见的版本要求(或假设)所有样本独立同分布,且他们共同服从的分布存在前两阶原点矩。
大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。因为条件更强,中心极限定理的结论也更强,大数定律只是证明几乎处处收敛,却没有指明收敛的速度,而中心极限定理给出了收敛的极限分布和渐近方差。
Tips on Probability Theory的更多相关文章
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
- Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划
A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...
- 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...
- [PR & ML 3] [Introduction] Probability Theory
虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其 ...
- Probability theory
1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分 ...
- 概率论基础知识(Probability Theory)
概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r ...
- P1-概率论基础(Primer on Probability Theory)
2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右 ...
- CF1239A Ivan the Fool and the Probability Theory
思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...
- CF C.Ivan the Fool and the Probability Theory【思维·构造】
题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...
随机推荐
- word表格中怎么添加递增的序号
word2013表格中怎么添加递增的序号?word2013表格中想要让第一类自动显示递增序号,该怎么操作呢?下面我们就来分享两种方法,需要的朋友可以参考下 工具/原料 word2013 通过项目编 ...
- 《JAVA高并发编程详解》-Thread对象的启动
当我们用关键字new创建一个Thread对象时,此时它并不处于执行状态,因为没有调用start方法启动该线程,那么线程的状态为NEW状态,NEW状态通过start方法进入RUNNABLE状态. 线程一 ...
- Java 阿拉伯数字转换为中文大写数字
Java 阿拉伯数字转换为中文大写数字 /** * <html> * <body> * <P> Copyright 1994 JsonInternational&l ...
- mysql 5.7 非正常安装,无法启动 服务没有报告任何错误
以前,完整安装mysql5.7程序时,由于程序太大,可以将安装缓存目录中的安装文件(较小)复制出来后,留以后使用. mysql--win32.msi 2 mysql-5.7.17-winx64.msi ...
- 一个多进程爬虫下载图片的demo
import os,re import pickle import requests import random import time from bs4 import BeautifulSoup f ...
- log4j使用指北
背景 工作一直使用日志组件,但是配置却一直看的糊里糊涂的,只记得个日志级别,其他的都不太理解,例如,一个页面日志太多,怎么样能单独打印?所以就找机会整理了一下. 本文参考:https://www.cn ...
- js utc转当地时间
javascript utc转当地时间 后台传过来的时间:2019-07-03T01:39:51.691242+08:00 转成当地时间:2019-07-02 17:39:51 new Date(20 ...
- ansible 中 JAVA_HOME不生效问题
解决方案 ~/.bash_profile 是交互式.login 方式进入 bash 运行的,意思是只有用户登录时才会生效. ~/.bashrc 是交互式 non-login 方式进入 bash 运行的 ...
- java系统化基础-day01-基础语法知识
1.学前必看 该课程将系统化的讲解java基础,但是该课程并不适合零基础的学员,因为在整个java学习体系中我们是按照实际生产设计, 主体思路是以完成某个业务为主线,用到什么技术就学什么技术,即带着问 ...
- Python学习日记(三十四) Mysql数据库篇 二
外键(Foreign Key) 如果今天有一张表上面有很多职务的信息 我们可以通过使用外键的方式去将两张表产生关联 这样的好处能够节省空间,比方说你今天的职务名称很长,在一张表中就要重复的去写这个职务 ...