1、独立与不相关

随机变量X和Y相互独立,有:E(XY) = E(X)E(Y)。

独立一定不相关,不相关不一定独立(高斯过程里二者等价) 。对于均值为零的高斯随机变量,“独立”和“不相关”等价的。

独立性是指两个变量的发生概率一点关系没有,而相关性通常是指线性关系。如果两个变量不相关,指的是线性关系里不相关,但是不能说它们没有关系,可能是线性以外的其他关系。

2、中心极限定理和强、弱大数定律

中心极限定理和强、弱大数定律是概率论的核心,历史悠久(不晚于1733年)。

大数定律讲的是样本均值收敛到总体均值(就是期望)。即如果统计数据足够大,那么事物出现的频率就能无限接近他的期望值。

小数定律是说,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。

中心极限定理告诉我们:大量独立同分布随机变量之和满足高斯分布,即当样本量足够大时,样本均值的分布慢慢变成正态分布。

即样本的平均值约等于总体的平均值。不管总体是什么分布,任意一个总体的样本平均值都会围绕在总体的整体平均值周围,并且呈正态分布。

中心极限定理有很多版本,最常见的版本要求(或假设)所有样本独立同分布,且他们共同服从的分布存在前两阶原点矩。

大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。因为条件更强,中心极限定理的结论也更强,大数定律只是证明几乎处处收敛,却没有指明收敛的速度,而中心极限定理给出了收敛的极限分布和渐近方差。

Tips on Probability Theory的更多相关文章

  1. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  2. Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划

    A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...

  3. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

  4. [PR & ML 3] [Introduction] Probability Theory

    虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其 ...

  5. Probability theory

    1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分 ...

  6. 概率论基础知识(Probability Theory)

    概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r ...

  7. P1-概率论基础(Primer on Probability Theory)

    2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右 ...

  8. CF1239A Ivan the Fool and the Probability Theory

    思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...

  9. CF C.Ivan the Fool and the Probability Theory【思维·构造】

    题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...

随机推荐

  1. 类的练习2——python编程从入门到实践

    9-7 管理员: 管理员是一种特殊的用户.编写一个名为Admin的类,并让它继承练习9-3或者9-5的User类.添加一个名为privileges的属性,用于存储一个由字符串(如"can a ...

  2. 微信配置JS接口安全域名问题-Nginx配置

    1.将下载的txt文件放入/usr/local/nginx/html/目录下面. 2.修改nginx.cong配置文件中的location标签 location / { root html; inde ...

  3. 「UR#6」懒癌

    「UR#6」懒癌 妈妈我居然看了六个小时题解,快救救乌干达的可怜儿童吧. 接下来开始膜官方题解: ​ 其实就算有上面两个结论也不是很好想到任意复杂度的做法,关键在于要想到一个人是怎么推断自己的狗是不是 ...

  4. Scala 系列(四)—— 数组 Array

    一.定长数组 在 Scala 中,如果你需要一个长度不变的数组,可以使用 Array.但需要注意以下两点: 在 Scala 中使用 (index) 而不是 [index] 来访问数组中的元素,因为访问 ...

  5. PTA A1017

    A1017 Queueing at Bank (25 分) 题目内容 Suppose a bank has K windows open for service. There is a yellow ...

  6. MVC运行机制[转]

    原:http://www.cnblogs.com/jyan/archive/2012/06/29/2569566.html#3122335 ASP.NET是一种建立动态Web应用程序的技术.它是.NE ...

  7. 自学Python编程的第二天----------来自苦逼的转行人

    今天是2019.9.11号22:51分 这是我自学Python的第二天,也是我写博客的第二天,还是不知道怎样写博客的第二天,有点懵 今天学Python还是一样的懵,错误还是有很多,而且脑中也不够灵活, ...

  8. js基础闭包练习题

    题目描述 实现函数 makeClosures,调用之后满足如下条件:1.返回一个函数数组 result,长度与 arr 相同2.运行 result 中第 i 个函数,即 result[i](),结果与 ...

  9. html5的基本介绍

    前言 (1)什么是HTML? 指超文本标记语言(Hyper Text Markup Language); 是用来描述网页的一种语言: 不是编程语言,是一种标记语言: (更多详细内容,百度:https: ...

  10. nodeJS实现简易爬虫

    nodeJS实现简易爬虫 需求:使用nodeJS爬取昵图网某个分类下的图片并存入本地 运用nodeJS自带系统模块http.fs 示例代码: var http =require('http'); va ...