Tips on Probability Theory
1、独立与不相关
随机变量X和Y相互独立,有:E(XY) = E(X)E(Y)。
独立一定不相关,不相关不一定独立(高斯过程里二者等价) 。对于均值为零的高斯随机变量,“独立”和“不相关”等价的。
独立性是指两个变量的发生概率一点关系没有,而相关性通常是指线性关系。如果两个变量不相关,指的是线性关系里不相关,但是不能说它们没有关系,可能是线性以外的其他关系。
2、中心极限定理和强、弱大数定律
中心极限定理和强、弱大数定律是概率论的核心,历史悠久(不晚于1733年)。
大数定律讲的是样本均值收敛到总体均值(就是期望)。即如果统计数据足够大,那么事物出现的频率就能无限接近他的期望值。
小数定律是说,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。
中心极限定理告诉我们:大量独立同分布随机变量之和满足高斯分布,即当样本量足够大时,样本均值的分布慢慢变成正态分布。
即样本的平均值约等于总体的平均值。不管总体是什么分布,任意一个总体的样本平均值都会围绕在总体的整体平均值周围,并且呈正态分布。
中心极限定理有很多版本,最常见的版本要求(或假设)所有样本独立同分布,且他们共同服从的分布存在前两阶原点矩。
大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。大数定律成立的条件比中心极限定理宽松,前者只需要一阶矩存在,而后者需要前两阶矩都存在。因为条件更强,中心极限定理的结论也更强,大数定律只是证明几乎处处收敛,却没有指明收敛的速度,而中心极限定理给出了收敛的极限分布和渐近方差。
Tips on Probability Theory的更多相关文章
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
- Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划
A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...
- 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...
- [PR & ML 3] [Introduction] Probability Theory
虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其 ...
- Probability theory
1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分 ...
- 概率论基础知识(Probability Theory)
概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r ...
- P1-概率论基础(Primer on Probability Theory)
2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右 ...
- CF1239A Ivan the Fool and the Probability Theory
思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...
- CF C.Ivan the Fool and the Probability Theory【思维·构造】
题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...
随机推荐
- Django-09-cookie和session
1. 简介 <1> cookie不属于http协议范围,由于http协议无法保持状态,但实际情况,我们却又需要“保持状态”,因此cookie就是在这样一个场景下诞生. cookie的工作原 ...
- 文件包含lfi
CG-CTF web(文件包含漏洞) 参考链接:https://blog.csdn.net/qq_34072526/article/details/89431431 php://filter 的使用: ...
- C语言指针的一些用法
指针是C语言的灵魂,精华之所在.指针强大而危险,用得好是一大利器,用得不好是一大潜在危害.正是指针具有强大而又危险的特性,加上指针比较难,很多人用的不好,所以越是封装程度高的语言,越是没有指针的&qu ...
- 【Go】开发中遇到的坑——持续更新
关于CGo多语言编译 问题出现在将openCV封装到go语言的时候.在编译时需要设置 CGO_ENABLED=1 GOOS=linux GOARCH=amd64 go build -o xxx mai ...
- Go语言【数据结构】数组
数组 简介 数组是具有相同唯一类型的一组已编号且长度固定的数据项序列,这种类型可以是任意的原始类型例如整形.字符串或者自定义类型.数组形式 numbers[0], numbers[1] ..., nu ...
- Java数据结构-ArrayList最细致的解析笔记
ArrayList是一个类,这个类有一个数组参数elementData,ArrayList集合中的元素正是保存在这个数组中,它继承了数组查询的高性能,参考第3篇.ArrayList还封装了很多方法,便 ...
- 【解决方案】文件上具有 Web 标记,请删除 Web 标记
错误: 无法处理文件 Form1.resx,因为它位于 Internet 或受限区域中,或者文件上具有 Web 标记.要想处理这些文件,请删除 Web 标记. 解决方法: 文件-右键-属性 点击”解 ...
- 2019 顺网游戏java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.顺网游戏等公司offer,岗位是Java后端开发,因为发展原因最终选择去了顺网游戏,入职一年时间了,也成为了面 ...
- JS基础理论相关知识
1.XHTML和HTML有什么区别 HTML是一种基本的WEB网页设计语言,XHTML是一个基于XML的置标语言最主要的不同:XHTML 元素必须被正确地嵌套.XHTML 元素必须被关闭.标签名必须用 ...
- python学习之os模块
1 window下的路径分隔符和mac上的一样吗 在win下用\做路径分隔符,mac里用/ 2.如何查看当前工作目录 import os os.getcwd() 3.如何切换当前工作目录 import ...