探索性数据分析(Exploratory Data Analysis,EDA)主要的工作是:对数据进行清洗,对数据进行描述(描述统计量,图表),查看数据的分布,比较数据之间的关系,培养对数据的直觉,对数据进行总结等。

探索性数据分析(EDA)与传统统计分析(Classical Analysis)的区别:

传统的统计分析方法通常是先假设样本服从某种分布,然后把数据套入假设模型再做分析。但由于多数数据并不能满足假设的分布,因此,传统统计分析结果常常不能让人满意。

探索性数据分析方法注重数据的真实分布,强调数据的可视化,使分析者能一目了然看出数据中隐含的规律,从而得到启发,以此帮助分析者找到适合数据的模型。“探索性”是指分析者对待解问题的理解会随着研究的深入不断变化。

应用传统统计分析方法的数据分析步骤:

    提出问题 Problem => 准备数据 Data => 建模 Model => 分析 Analysis => 得出结论 Conclusions

应用探索性数据分析方法的数据分析步骤:

    提出问题 Problem => 准备数据 Data => 分析 Analysis => 建模 Model => 得出结论 Conclusions

探索性数据分析通常有以下几个步骤:

A. 检查数据:

- 是否有缺失值? 
- 是否有异常值? 
- 是否有重复值? 
- 样本是否均衡?
- 是否需要抽样? 
- 变量是否需要转换? 
- 是否需要增加新的特征?

注:数据类型分为数值型,类别型,文本型,时间序列等。这里主要指的是数值型(定量数据)和类别型(定性数据),其中数值型又可以分为连续型和离散型。

B. 使用描述统计量和图表对数据进行描述:

1)连续变量:

常见的描述统计量:平均值,中位数,众数,最小值,最大值,四分位数,标准差等

图表:频数分布表(需进行分箱操作),直方图,箱线图(查看分布情况)

2)无序型离散变量:

常见的描述统计量:各个变量出现的频数和占比

图表:频数分布表(绝对频数,相对频数,百分数频数),柱形图,条形图,茎叶图,饼图

3)有序型离散变量:

常见的描述统计量:各个变量出现的频数和占比

图表:频数分布表,堆积柱形图,堆积条形图(比较大小)

C. 考察变量之间的关系:

1)连续变量和连续变量(Continuous & Continuous):

对于连续变量与连续变量之间的关系,可以通过散点图进行查看。对于多个连续变量,可使用散点图矩阵,相关系数矩阵,热图。

量化指标:皮尔逊相关系数(线性关系),互信息(非线性关系)

2)离散变量和离散变量(Discrete & Discrete):

对于离散变量与离散变量之间的关系,可以通过交叉分组表,复合柱形图,堆积柱形图,饼图进行查看。对于多个离散变量,可以使用网状图,通过各个要素之间是否有线条,以及线条的粗线来显示是否有关系以及关系的强弱。

量化指标:卡方独立性检验--->Cramer’s φ (Phi) or Cramer’s V

3)离散变量和连续变量(Discrete & Continuous):

对于离散变量和连续变量之间的关系,可以使用直方图,箱线图,小提琴图进行查看,将离散变量在图形中用不同的颜色显示,来直观地观察变量之间的关系。

量化指标:独立样本t检验中的t统计量和相应的p值(两个变量),单因素方差分析中的η²(三个变量及以上)

D. 其他

1)检查数据的正态性:直方图,箱线图,Q-Q图(Quantile-Quantile Plot )

直方图,箱线图:看图形是否对称

Q-Q图:比较数据的分位数与某个理论分布的分位数是否匹配


总结一下,如果要对数据集进行探索性分析:(以名字为data的数据集为例)

第一步,用pandas读取数据集,并显示前5行,看是否加载正确;

第二步,有必要时对列名重命名;

第三步,查看数据整体情况(行列数data.shape,数据类型data.dtypes,或者用data.info()同时查看这两项,用data.describe()查看连续变量的描述统计量);

第四步,处理缺失值,异常值,重复值问题(各列分别有多少缺失值data.apply(lambda x: sum(x.isnull()),axis=0),各行分别有多少缺失值data.apply(lambda x: sum(x.isnull()),axis=1),总共有多少行有缺失值

len(data.apply(lambda x: sum(x.isnull()),axis=1).nonzero()[0]),删除重复值data.drop_duplicates());

第五步,有必要时转换数据类型;

第六步,看是否需要添加新的特征;

第七步,确定分析思路,用思维导图画出来;

第八步,按照分析思路进行分析并画出图形;

第九步,总结分析结果;


附:

图形的选择:描述趋势使用折线图,描述数量使用柱状图(且必须从 0 开始),描述关系使用散点图,描述比例使用饼状图。

科学家经过 30 年的研究,发现人对位置、长度和角度的感知最敏锐,可以用来表示数量,其次是面积和密度,可表示顺序,对于颜色和形状的感知是最不精确的,只可用来区分类别。

参考:https://www.jianshu.com/p/2e590d306bd2

探索性数据分析(Exploratory Data Analysis,EDA)的更多相关文章

  1. 1.探索性数据分析(EDA,Exploratory Data Analysis)

    一.数据探索 1.数据读取 遍历文件夹,读取文件夹下各个文件的名字:os.listdir() 方法:用于返回指定的文件夹包含的文件或文件夹的名字的列表.这个列表以字母顺序. 它不包括 '.' 和'.. ...

  2. 学习笔记之Data analysis

    Data analysis - Wikipedia https://en.wikipedia.org/wiki/Data_analysis Data analysis is a process of ...

  3. python Pandas Profiling 一行代码EDA 探索性数据分析

    文章大纲 1. 探索性数据分析 代码样例 效果 解决pandas profile 中文显示的问题 1. 探索性数据分析 数据的筛选.重组.结构化.预处理等都属于探索性数据分析的范畴,探索性数据分析是帮 ...

  4. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  5. 探索性数据分析EDA综述

    目录 1. 数据探索的步骤和准备 2. 缺失值处理 为什么需要处理缺失值 Why data has missing values? 缺失值处理的技术 3. 异常值检测和处理 What is an ou ...

  6. 深入浅出数据分析 Head First Data Analysis Code 数据与代码

    <深入浅出数据分析>英文名为Head First Data Analysis Code, 这本书中提供了学习使用的数据和程序,原书链接由于某些原因不 能打开,这里在提供一个下载的链接.去下 ...

  7. 数据分析---《Python for Data Analysis》学习笔记【04】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  8. 数据分析---《Python for Data Analysis》学习笔记【03】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  9. 数据分析---《Python for Data Analysis》学习笔记【02】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

随机推荐

  1. WPF 程序的编译过程

    原文:WPF 程序的编译过程 基于 Sdk 的项目进行编译的时候,会使用 Sdk 中附带的 props 文件和 targets 文件对项目进行编译.Microsoft.NET.Sdk.WindowsD ...

  2. How to do SSH Tunneling (Port Forwarding)

    How to do SSH Tunneling (Port Forwarding) In this post we will see how ssh works?, what is SSH tunne ...

  3. Java之路---Day05

    2019-10-19-21:09:31 面向对象的封装性 封装性 概念:封装就是将一些细节信息隐藏起来,对于外界不可见 面向对象封装性在Java中的体现 1.方法就是一种封装 public class ...

  4. Android笔记(七十六) 点菜DEMO

    一个朋友让看一下他的代码,一个点菜的功能,他和我一样,初学者,代码比我的都混乱,也是醉了,干脆想着自己写个demo给他看,原本想着听简单,半个小时应该就可以搞定,真正写的时候,画了3h+,汗颜... ...

  5. H3C 802.11n的频宽模式

  6. centos 宝塔 使用命令行快速导入数据库sql

    先将sql文件上传到服务器,例如上传到www文件夹 然后打开命令行工具 输入 mysql -u 数据库用户名 -p 然后复制密码进去 然后输入 use 数据库名 回车 然后输入 source /www ...

  7. MySQL/MariaDB数据库的存储引擎

    MySQL/MariaDB数据库的存储引擎 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.MySQL体系结构 连接管理模块: 负责接收远程用户的连接. 线程管理模块: 维护 ...

  8. saltstack安装使用

    官网地址:https://docs.saltstack.com/en/latest/ 安装 saltstack 1. ​ sudo yum install https://repo.saltstack ...

  9. MySQL的增、删、改、查

    数据库的常用命令以及作用 用法 作用 CREATE database 数据库名称. 创建新的数据库 DESCRIBE 表单名称; 描述表单 UPDATE 表单名称 SET attribute=新值 W ...

  10. ASP.NET Core ---- 系列文章

    (13)ASP.NET Core 中的选项模式(Options) (12)ASP.NET Core 中的配置二(Configuration) (11)ASP.NET Core 中的配置一(Config ...