美团在Redis上踩过的一些坑-4.redis内存使用优化

博客分类:

转载请注明出处哈:http://carlosfu.iteye.com/blog/2254154

更多Redis的开发、运维、架构以及新动态,欢迎关注微信公众号:


 

一、背景: 选择合适的使用场景

   很多时候Redis被误解并乱用了,造成的Redis印象:耗内存、价格成本很高:
   1. 为了“赶时髦”或者对于Mysql的“误解”在一个并发量很低的系统使用Redis,将原来放在Mysql数据全部放在Redis中。
     ----(Redis比较适用于高并发系统,如果是一些复杂Mis系统,用Redis反而麻烦,因为单从功能讲Mysql要更为强大,而且Mysql的性能其实已经足够了。)
   2. 觉得Redis就是个KV缓存
     -----(Redis支持多数据结构,并且具有很多其他丰富的功能)
   3. 喜欢做各种对比,比如Mysql, Hbase, Redis等等
    -----(每种数据库都有自己的使用场景,比如Hbase吧,我们系统的个性化数据有1T,此时放在Redis根本就不合适,而是将一些热点数据放在Redis)
    总之就是在合适的场景,选择合适的数据库产品。
  附赠两个名言:
Evan Weaver, Twitter, March 2009 写道
Everything runs from memory in Web 2.0!
Tim Gray 写道
Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is king.
(磁带已死,磁盘是新磁带,闪存是新磁盘,随机存储器局部性是为王道)
二、一次string转化为hash的优化
1. 场景:
    用户id: userId,
    用户微博数量:weiboCount    
userId(用户id) weiboCount(微博数)
1 2000
2

10

3

288

.... ...
1000000 1000
 
2. 实现方法:
(1) 使用Redis字符串数据结构, userId为key, weiboCount作为Value
(2) 使用Redis哈希结构,hashkey只有一个, key="allUserWeiboCount",field=userId,fieldValue= weiboCount
(3) 使用Redis哈希结构,  hashkey为多个, key=userId/100, field=userId%100, fieldValue= weiboCount
前两种比较容易理解,第三种方案解释一下:每个hashKey存放100个hash-kv,field=userId%100,也就是
userId hashKey field
1 0 1
2 0

2

3 0

3

... .... ...
99 0 99
100 1 0
101 1 1
.... ... ...
9999 99 99
100000 1000 0

注意:

为了排除共享对象的问题,在真实测试时候所有key,field,value都用字符串类型。

3. 获取方法:

  1. #获取userId=5003用户的微博数
  2. (1) get u:5003
  3. (2) hget allUser u:5003
  4. (3) hget u:50 f:3

4. 内存占用量对比(100万用户 userId u:1~u:1000000)

  1. #方法一 Memory
  2. used_memory:118002640
  3. used_memory_human:112.54M
  4. used_memory_rss:127504384
  5. used_memory_peak:118002640
  6. used_memory_peak_human:112.54M
  7. used_memory_lua:36864
  8. mem_fragmentation_ratio:1.08
  9. mem_allocator:jemalloc-3.6.0
  10. ---------------------------------------------------
  11. #方法二 Memory
  12. used_memory:134002968
  13. used_memory_human:127.80M
  14. used_memory_rss:144261120
  15. used_memory_peak:134002968
  16. used_memory_peak_human:127.80M
  17. used_memory_lua:36864
  18. mem_fragmentation_ratio:1.08
  19. mem_allocator:jemalloc-3.6.0
  20. --------------------------------------------------------
  21. #方法三 Memory
  22. used_memory:19249088
  23. used_memory_human:18.36M
  24. used_memory_rss:26558464
  25. used_memory_peak:134002968
  26. used_memory_peak_human:127.80M
  27. used_memory_lua:36864
  28. mem_fragmentation_ratio:1.38
  29. mem_allocator:jemalloc-3.6.0

那么为什么第三种能少那么多内存呢?之前有人说用了共享对象的原因,现在我将key,field,value全部都变成了字符串,仍然还是节约很多内存。

之前我也怀疑过是hashkey,field的字节数少造成的,但是我们下面通过一个实验看就清楚是为什么了。当我将hash-max-ziplist-entries设置为2并且重启后,所有的hashkey都变为了hashtable编码。

同时我们看到了内存从18.36M变为了122.30M,变化还是很大的。

  1. 127.0.0.1:8000> object encoding u:8417
  2. "ziplist"
  3. 127.0.0.1:8000> config set hash-max-ziplist-entries 2
  4. OK
  5. 127.0.0.1:8000> debug reload
  6. OK
  7. (1.08s)
  8. 127.0.0.1:8000> config get hash-max-ziplist-entries
  9. 1) "hash-max-ziplist-entries"
  10. 2) "2"
  11. 127.0.0.1:8000> info memory
  12. # Memory
  13. used_memory:128241008
  14. used_memory_human:122.30M
  15. used_memory_rss:137662464
  16. used_memory_peak:134002968
  17. used_memory_peak_human:127.80M
  18. used_memory_lua:36864
  19. mem_fragmentation_ratio:1.07
  20. mem_allocator:jemalloc-3.6.0
  21. 127.0.0.1:8000> object encoding u:8417
  22. "hashtable"

内存使用量:

5. 导入数据代码(不考虑代码优雅性,单纯为了测试,勿喷)
    注意:

为了排除共享对象的问题,这里所有key,field,value都用字符串类型。
  1. package com.carlosfu.redis;
  2. import java.util.ArrayList;
  3. import java.util.HashMap;
  4. import java.util.List;
  5. import java.util.Map;
  6. import java.util.Random;
  7. import org.junit.Test;
  8. import redis.clients.jedis.Jedis;
  9. /**
  10. * 一次string-hash优化
  11. *
  12. * @author carlosfu
  13. * @Date 2015-11-8
  14. * @Time 下午7:27:45
  15. */
  16. public class TestRedisMemoryOptimize {
  17. private final static int TOTAL_USER_COUNT = 1000000;
  18. private final static String HOST = "127.0.0.1";
  19. private final static int PORT = 6379;
  20. /**
  21. * 纯字符串
  22. */
  23. @Test
  24. public void testString() {
  25. int mBatchSize = 2000;
  26. Jedis jedis = null;
  27. try {
  28. jedis = new Jedis(HOST, PORT);
  29. List<String> kvsList = new ArrayList<String>(mBatchSize);
  30. for (int i = 1; i <= TOTAL_USER_COUNT; i++) {
  31. String key = "u:" + i;
  32. kvsList.add(key);
  33. String value = "v:" + i;
  34. kvsList.add(value);
  35. if (i % mBatchSize == 0) {
  36. System.out.println(i);
  37. jedis.mset(kvsList.toArray(new String[kvsList.size()]));
  38. kvsList = new ArrayList<String>(mBatchSize);
  39. }
  40. }
  41. } catch (Exception e) {
  42. e.printStackTrace();
  43. } finally {
  44. if (jedis != null) {
  45. jedis.close();
  46. }
  47. }
  48. }
  49. /**
  50. * 纯hash
  51. */
  52. @Test
  53. public void testHash() {
  54. int mBatchSize = 2000;
  55. String hashKey = "allUser";
  56. Jedis jedis = null;
  57. try {
  58. jedis = new Jedis(HOST, PORT);
  59. Map<String, String> kvMap = new HashMap<String, String>();
  60. for (int i = 1; i <= TOTAL_USER_COUNT; i++) {
  61. String key = "u:" + i;
  62. String value = "v:" + i;
  63. kvMap.put(key, value);
  64. if (i % mBatchSize == 0) {
  65. System.out.println(i);
  66. jedis.hmset(hashKey, kvMap);
  67. kvMap = new HashMap<String, String>();
  68. }
  69. }
  70. } catch (Exception e) {
  71. e.printStackTrace();
  72. } finally {
  73. if (jedis != null) {
  74. jedis.close();
  75. }
  76. }
  77. }
  78. /**
  79. * segment hash
  80. */
  81. @Test
  82. public void testSegmentHash() {
  83. int segment = 100;
  84. Jedis jedis = null;
  85. try {
  86. jedis = new Jedis(HOST, PORT);
  87. Map<String, String> kvMap = new HashMap<String, String>();
  88. for (int i = 1; i <= TOTAL_USER_COUNT; i++) {
  89. String key = "f:" + String.valueOf(i % segment);
  90. String value = "v:" + i;
  91. kvMap.put(key, value);
  92. if (i % segment == 0) {
  93. System.out.println(i);
  94. int hash = (i - 1) / segment;
  95. jedis.hmset("u:" + String.valueOf(hash), kvMap);
  96. kvMap = new HashMap<String, String>();
  97. }
  98. }
  99. } catch (Exception e) {
  100. e.printStackTrace();
  101. } finally {
  102. if (jedis != null) {
  103. jedis.close();
  104. }
  105. }
  106. }
  107. }
三、结果对比
 redis核心对象 数据类型 + 编码方式 + ptr  分段hash也不会造成drift
方案 优点 缺点
string

直观、容易理解

  1. 内存占用较大
  2. key值分散、不变于计算整体
hash

直观、容易理解、整合整体

  1. 内存占用大
  2. 一个key占用过大内存,如果是redis-cluster会出 现data drift
segment-hash

内存占用量小,虽然理解不够直观,但是总体上是最优的。

理解不够直观。

 
四、结论:
   在使用Redis时,要选择合理的数据结构解决实际问题,那样既可以提高效率又可以节省内存。所以此次优化方案三为最佳。
 
附图一张:redis其实是一把瑞士军刀:

[转帖]美团在Redis上踩过的一些坑-4.redis内存使用优化的更多相关文章

  1. [转帖]美团在Redis上踩过的一些坑-5.redis cluster遇到的一些问题

    美团在Redis上踩过的一些坑-5.redis cluster遇到的一些问题 博客分类: redis 运维 redis clustercluster-node-timeoutfailover  转载请 ...

  2. [转帖]美团在Redis上踩过的一些坑-3.redis内存占用飙升

    美团在Redis上踩过的一些坑-3.redis内存占用飙升 博客分类: 运维 redis redismonitor内存突增client listinfo     转载请注明出处哈:http://car ...

  3. 美团在Redis上踩过的一些坑-3.redis内存占用飙升(转载)

     一.现象:     redis-cluster某个分片内存飙升,明显比其他分片高很多,而且持续增长.并且主从的内存使用量并不一致.   二.分析可能原因:  1.  redis-cluster的bu ...

  4. [转帖]美团在Redis上踩过的一些坑-2.bgrewriteaof问题

    美团在Redis上踩过的一些坑-2.bgrewriteaof问题 博客分类: redis 运维 aofaof rewrite  转载请注明出处哈:http://carlosfu.iteye.com/b ...

  5. [转帖]美团在Redis上踩过的一些坑-1.客户端周期性出现connect timeout

    美团在Redis上踩过的一些坑-1.客户端周期性出现connect timeout 博客分类: redis 运维 jedisconnect timeoutnosqltcp  转载请注明出处哈:http ...

  6. 美团在Redis上踩过的一些坑-目录(本人非美团)(转)

    来自:http://carlosfu.iteye.com/blog/2254154 分为5个部分:    一.周期性出现connect timeout    二.redis bgrewriteaof问 ...

  7. Redis上踩过的一些坑

    来自: http://blog.csdn.net//chenleixing/article/details/50530419 上上周和同事(龙哥)参加了360组织的互联网技术训练营第三期,美团网的DB ...

  8. redis主从复制踩到的那些坑

    一.报错:* MASTER <-> SLAVE sync started # Error condition on socket for SYNC: No route to host解决: ...

  9. 【一个idea】YesSql,一种在经典nosql数据库redis上实现SQL引擎的方案(我就要开历史的倒车)

    公众号链接 最高级的红酒,一定要掺上雪碧才好喝. 基于这样的品味,我设计出了一套在经典nosql数据库redis上实现SQL引擎的方法.既然redis号称nosql,而我偏要把SQL加到redis上, ...

随机推荐

  1. ES6兼容ie9, flex兼容ie9

    vue兼容ES6 在 ie9 的环境上,es6 的部分新对象.表达式,并不支持,解决方案是使用 babel-polyfill 组件,它可以将 es6 的代码翻译成低版本浏览器可以识别的 es5 代码 ...

  2. SpringBoot自定义Condition注解

        最近碰到个这样的需求,需要同一套代码适配个版本数据库(数据库不同,且部分表的字段及关联关系可能会不同),即这套代码配置不同的数据库都能跑.项目采用的框架为SpringBoot+Mybatis. ...

  3. Pods应用NFS存储

    Volumes选择NFS服务器: 条件: 1. k8s集群,目前为(hadoop1,hadoop2,hadoop3) 2. 另起一台服务器做专门的NFS服务器 3. NFS需要在K8S的各个节点安装 ...

  4. 《linux就该这么学》课堂笔记18 squid服务

    Squid服务程序正向解析和反向解析 正向代理模式不仅可以让用户使用Squid代理服务器上网,还可以基于指定的IP地址.域名关键词.网站地址或下载文件后缀等信息,实现类似于访问控制列表的功能.反向代理 ...

  5. [转]【HttpServlet】HttpServletResponse接口 案例:完成文件下载

    创建时间:6.19 & 6.24 1.案例-完成文件下载 1)  什么情况下会文件下载? 浏览器不能解析的文件就下载 *使用a标签直接指向服务器上的资源 2)什么情况下需要在服务端编写文件下载 ...

  6. 1 NLP学习大纲

    一.自然语言处理概述 1)自然语言处理:利用计算机为工具,对书面实行或者口头形式进行各种各样的处理和加工的技术,是研究人与人交际中以及人与计算机交际中的演员问题的一门学科,是人工智能的主要内容. 2) ...

  7. NVIDIA-GPU归入K8S集群管理的安装文档--第二版

    一,nvidia K80驱动安装 1,  查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 2,  按下来,进行显卡驱动程序的安装,驱动程序可到nvidia的官网 ...

  8. python关于type()与生成器generator的用法

    如果按这种形式写  type(a)(b) 那此处的b是个可迭代对象,这个对象迭代完成后,再放到type里    from pymysql._compat import range_type, text ...

  9. LCD硬件原理

    想象一下,屏幕的后面有一个电子枪,电子枪位于某个像素的背后,然后向这个像素发射红绿蓝三原色,从而就可以组成任意一种颜色.简单的说,电子枪在像素的背后一边移动,一边向像素发射红绿蓝. 如果要编写出LCD ...

  10. LocalDateTime的一些用法

    包括获取当前时间,指定特定时间.进行时间的加减等 LocalDateTime localDateTime3 = LocalDateTime.now(); LocalDate.now(); LocalT ...