一个关于gcd的等式的证明
证:$a > b$ 且 $gcd(a,b)=1$,有 $gcd(a^n-b^n, a^m-b^m) = a^{gcd(n, m)} - b^{gcd(n,m)}$.
证明:
假设 $n > m$,$r = n \% m$.
根据辗转相除法,
$a^n - b^n = (a^m-b^m)(a^{n-m} + a^{n-2m}b^m + ...+) + a^rb^{n-r} - b^n$,
$gcd(a^n-b^n, a^m-b^m) = gcd(a^m-b^m, a^rb^{n-r}-b^n) = gcd(a^m-b^m, b^{n-r}(a^r-b^r))$,
因为 $r = n \% m$,所以 $b^{n-r} = b^{m\left \lfloor \frac{n}{m} \right \rfloor} = b^{km}$。
考虑 $gcd(b^{km}, a^m-b^m)$,
由多项式除法 $b^{km} = (a^m-b^m)(-b^{(k-1)m}- a^mb^{(k-2)m}-...-a^{(k-1)m}) + a^{km}$,
$gcd(b^{km}, a^m-b^m) = gcd(a^{km}, a^m-b^m) = d$,
$d | b^{km},\ d|a^{km}, \ d | gcd(b^{km}, a^{km})=1$,所以 $d=1$,即 $gcd(b^{n-r}, a^m-b^m)=1$.
所以 $gcd(a^n-b^n, a^m-b^m) = gcd(a^m-b^m, a^{n \% m}-b^{n \% m}) = a^{gcd(n,m)} - b ^ {gcd(n,m)}$.
(其实整个过程就是辗转相除法)
一个关于gcd的等式的证明的更多相关文章
- 一个关于AdaBoost算法的简单证明
下载本文PDF格式(Academia.edu) 本文给出了机器学习中AdaBoost算法的一个简单初等证明,需要使用的数学工具为微积分-1. Adaboost is a powerful algori ...
- UVa 12716 GCD XOR (简单证明)
题意: 问 gcd(i,j) = i ^ j 的对数(j <=i <= N ) N的范围为30000000,有10000组例子 思路:GCD(a,b) = a^b = c GCD(a/c ...
- 【数论】如何证明gcd/exgcd
我恨数论 因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数 咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)? 首先,设 ...
- 最大公约数(gcd):Euclid算法证明
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ...
- 一个数独引发的惨案:零知识证明(Zero-Knowledge Proof)
导言:原文的作者是著名的Ghost和Spectre 这两个协议的创始团队的领队Aviv Zohar.原文作者说他的这篇原文又是引用了以下这两篇学术论文: How to Explain Zero Kno ...
- O(1) 查询gcd
我们来安利一个黑科技.(其实是Claris安利来的 比如我现在有一坨询问,每次询问两个不超过n的数的gcd. n大概1kw,询问大概300w(怎么输入就不是我的事了,大不了交互库 http://mim ...
- IOS多线程 总结 -------------核心代码(GCD)
//NSObject //在子线程中执行代码 // 参数1: 执行的方法 (最多有一个参数,没有返回值) //参数2: 传递给方法的参数 [self performSelectorInBackgrou ...
- 欧几里得算法求最大公约数(gcd)
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...
- 【学习笔记】关于最大公约数(gcd)的定理
手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140 结论1 \[\g ...
随机推荐
- Apache Kafka Producer For Beginners
在我们上一篇Kafka教程中,我们讨论了Kafka Cluster.今天,我们将通过示例讨论Kafka Producer.此外,我们将看到KafkaProducer API和Producer API. ...
- mysql中数据表记录的增删查改(2)
select `数据表.字段1`, group_concat(`数据表.字段2`) from `数据表` group by `数据表.字段1` order by `数据表.字段1` desc; sel ...
- python基础 — 数据组合
a = [1, 2, 3] b = [4, 5, 6] c = [7, 8, 9] for x, y, z in (a, b, c): print(x, y, x) print(type(zip(a, ...
- Java找N个数中最小的K个数,PriorityQueue和Arrays.sort()两种实现方法
最近看到了 java.util.PriorityQueue.刚看到还没什么感觉,今天突然发现他可以用来找N个数中最小的K个数. 假设有如下 10 个整数. 5 2 0 1 4 8 6 9 7 3 怎么 ...
- C语言实现简单的计算器(加、减、乘、除)
利用运算符做为swich case 语句条件,实现简单程序的编写;并且对输入的运算做判断,除数为零也需做判断; #include<stdio.h> int add(int a, int ...
- xorm -Get方法实例
查询单条数据使用Get方法,在调用Get方法时需要传入一个对应结构体的指针,同时结构体中的非空field自动成为查询的条件和前面的方法条件组合在一起查询 package main import ( & ...
- 【LEETCODE】42、922. Sort Array By Parity II
package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...
- Linux -- touch 命令
在Linux中,每个文件都关联一个时间戳,并且每个文件搜会存储最近一次访问的时间.最近一次修改的时间和最近一次变更的时间等信息.所以,无论何时我们创建一个新文件,访问或者修改一个已经存在的文件,文件的 ...
- kafka和zookeeper安装部署(版本弄不好就是坑)
yum install -y unzip zip 配置host vi /etc/host172.19.68.10 zk1 1. zookeeper zookeeper下载地址 http://mirro ...
- golang ---CPU信息
package main import ( "fmt" "github.com/StackExchange/wmi" ) type gpuInfo struct ...