Java线程读写锁
排他锁和共享锁:
读写锁:既是排他锁,又是共享锁。读锁,共享锁,写锁:排他锁
读和读是不互斥的
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock; public class Demo { private Map<String, Object> map=new HashMap<>();
private ReadWriteLock rwl=new ReentrantReadWriteLock(); private Lock r=rwl.readLock();
private Lock w=rwl.writeLock(); public Object get(String key){
r.lock();
System.out.println(Thread.currentThread().getName()+"读操作正在执行。。。");
try {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return map.get(key);
} finally{
r.unlock();
System.out.println(Thread.currentThread().getId()+"读操作执行完毕。。。");
}
}
public void put(String key,Object value){
w.lock();
System.out.println(Thread.currentThread().getName()+"写操作在执行。。。");
try {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
map.put(key, value);
} finally {
w.unlock();
System.out.println(Thread.currentThread().getName()+"写操作执行完毕。。。");
}
}
}
public class Main {
public static void main(String[] args) {
Demo d=new Demo();
d.put("key1", "value1");
// new Thread(new Runnable() {
// @Override
// public void run() {
// d.put("key1", "value1");
// }
// }).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(d.get("key1"));
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(d.get("key1"));
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(d.get("key1"));
}
}).start();
// new Thread(new Runnable() {
// @Override
// public void run() {
// d.put("key3", "value3");
// }
// }).start();
}
}
读写锁需要保存的状态:
写锁重入的次数
读锁的个数
每个读锁重入的次数
锁降级:是指写锁降为读锁
在写锁没有释放的时候,获取到读锁,在释放写锁
锁升级:
把读锁,升级为写锁
在读锁没有释放的时候,获取到写锁,在释放读锁
private volatile boolean isUpdate;
public void readWrite(){
r.lock();
if(isUpdate){
r.unlock();
w.lock();
map.put("XXX", "xxx");
r.lock();
w.unlock();
}
Object obj=map.get("XXX");
System.out.println(obj);
r.unlock();
}
出现线程安全性问题的条件
1.必须在多线程的环境下
2.必须有共享资源
3.对共享资源进行非原子性操作
解决线程安全性问题的途径
1.synchronized 相对慢(偏向锁、轻量级锁、重量级锁)
2.volatile(只能保证读写操作,不能保证非原子性操作)
3.JDK提供的原子类
4.使用Lock(共享锁、排它锁)
认识的“*锁“
1.偏向锁
2.轻量级锁
3.重量级锁
4.重入锁
5.自旋锁
6.共享锁
7.独占锁
8.排它锁
9.读写锁
10.公平锁
11.非公平锁
12.死锁
13.活锁
public class Tmall {
public int count;
public final int MAX_COUNT=10;
public synchronized void push(){
while(count>=MAX_COUNT)
try {
System.out.println(Thread.currentThread().getName()+
"库存数量达到上限,生产者停止生产。");
wait();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
count++;
System.out.println(Thread.currentThread().getName()
+"生产者生产,当前库存为:"+count);
notify();
}
public synchronized void task(){
while(count<=0)
try {
System.out.println(Thread.currentThread().getName()+
"库存数量为零,消费着等待。");
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
count--;
System.out.println(Thread.currentThread().getName()+
"消费者消费,当前库存为:"+count);
notify();
}
}
public class TaskTarget implements Runnable {
private Tmall tmall;
public TaskTarget(Tmall tmall) {
this.tmall=tmall;
}
@Override
public void run() {
tmall.task();
}
}
public class PushTarget implements Runnable{
private Tmall tmall;
public PushTarget(Tmall tmall) {
this.tmall=tmall;
}
@Override
public void run() {
while(true){
tmall.push();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public class Main {
public static void main(String[] args){
Tmall tmall=new Tmall();
PushTarget p=new PushTarget(tmall);
TaskTarget t=new TaskTarget(tmall);
new Thread(p).start();
new Thread(p).start();
new Thread(p).start();
new Thread(t).start();
new Thread(t).start();
new Thread(t).start();
}
}
Condition的使用。
public class Demo5 {
private int signal;
//执行顺序 a->b->c
public synchronized void a(){
while(signal!=0){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("a");
signal++;
notifyAll();
}
public synchronized void b(){
while(signal!=1){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("b");
signal++;
notifyAll();
}
public synchronized void c(){
while(signal!=2){
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("c");
signal=0;
notifyAll();
}
public static void main(String[] args){
Demo5 d=new Demo5();
A a=new A(d);
B b=new B(d);
C c=new C(d);
new Thread(a).start();
new Thread(b).start();
new Thread(c).start();
}
}
class A implements Runnable{
private Demo5 demo;
public A(Demo5 demo){
this.demo=demo;
}
@Override
public void run(){
while(true){
demo.a();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class B implements Runnable{
private Demo5 demo;
public B(Demo5 demo){
this.demo=demo;
}
@Override
public void run(){
while(true){
demo.b();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class C implements Runnable{
private Demo5 demo;
public C(Demo5 demo){
this.demo=demo;
}
@Override
public void run(){
while(true){
demo.c();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
用condition
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; public class Demo { private int signal; Lock lock = new ReentrantLock();
Condition a = lock.newCondition();
Condition b = lock.newCondition();
Condition c = lock.newCondition(); public void a() {
lock.lock();
while(signal != 0 ) {
try {
a.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("a");
signal ++;
b.signal();
lock.unlock();
} public void b() {
lock.lock();
while(signal != 1) {
try {
b.await();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
System.out.println("b");
signal ++;
c.signal();
lock.unlock();
} public void c () {
lock.lock();
while(signal != 2) {
try {
c.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("c");
signal = 0;
a.signal();
lock.unlock();
} public static void main(String[] args) { Demo d = new Demo();
A a = new A(d);
B b = new B(d);
C c = new C(d); new Thread(a).start();
new Thread(b).start();
new Thread(c).start(); }
} class A implements Runnable { private Demo demo; public A(Demo demo) {
this.demo = demo;
} @Override
public void run() {
while(true) {
demo.a();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} }
class B implements Runnable { private Demo demo; public B(Demo demo) {
this.demo = demo;
} @Override
public void run() {
while(true) {
demo.b();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} }
class C implements Runnable { private Demo demo; public C(Demo demo) {
this.demo = demo;
} @Override
public void run() {
while(true) {
demo.c();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
实现一个队列:
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; public class MyQueue<E> {
private Object[] obj;
private int addIndex;
private int removeIndex;
private int queueSize; private Lock lock=new ReentrantLock();
Condition addCondition=lock.newCondition();
Condition removeCondition=lock.newCondition(); public MyQueue(int count){
obj=new Object[count];
}
public void add(E e){
lock.lock();
//满了之后等待
while(queueSize==obj.length){
try {
addCondition.await();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
}
obj[addIndex]=e;
if(++addIndex==obj.length){ //先比较在++
addIndex=0;
}
queueSize++;
removeCondition.signal();
lock.unlock();
}
public void remove(){
lock.lock();
while (queueSize==0) {
try {
removeCondition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
obj[removeIndex]=null;
if(++removeIndex==obj.length){
removeIndex=0;
}
queueSize--;
addCondition.signal();
lock.unlock();
}
}
Java线程读写锁的更多相关文章
- java多线程-读写锁
Java5 在 java.util.concurrent 包中已经包含了读写锁.尽管如此,我们还是应该了解其实现背后的原理. 读/写锁的 Java 实现(Read / Write Lock Java ...
- java多线程-读写锁原理
Java5 在 java.util.concurrent 包中已经包含了读写锁.尽管如此,我们还是应该了解其实现背后的原理. 读/写锁的 Java 实现(Read / Write Lock Java ...
- freeswitch APR库线程读写锁
概述 freeswitch的核心源代码是基于apr库开发的,在不同的系统上有很好的移植性. 线程读写锁在多线程服务中有重要的作用.对于读数据比写数据频繁的服务,用读写锁代替互斥锁可以提高效率. 由于A ...
- 利用Java的读写锁实现缓存的设计
Java中的读写锁: 多个读锁不互斥, 读锁与写锁互斥, 写锁与写锁互斥, 这是由JVM自行控制的,我们只要上好相应的锁即可. 缓存的设计: package com.cn.gbx; import ja ...
- Java 并发 —— 读写锁(ReadWriteLock)
读写锁(ReadWriteLock),顾名思义,就是在读写某文件时,对该文件上锁. 1. ReentrantReadWriteLock 三部曲: 加锁: 读写操作: 解锁:(为保证解锁操作一定执行,通 ...
- Java中读写锁的介绍
读写锁的简单介绍 所谓的读写锁,就是将一个锁拆分为读锁和写锁两个锁,然后你加锁的时候,可以加读锁,也可以加写锁. ReentrantLock lock=new ReentrantLock(); loc ...
- java并发编程-读写锁
最近项目中需要用到读写锁 读写锁适用于读操作多,写操作少的场景,假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁.在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以 ...
- Java线程新特征——Java并发库
一.线程池 Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线程相关的内容,为多线程的编程带来了极大便利.为了编写高效稳定 ...
- Java线程:概念与原理
Java线程:概念与原理 一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程 ...
随机推荐
- Centos 7 更换为 阿里云 yum 源
地址: https://opsx.alibaba.com/ 操作步骤: 1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentO ...
- JavaScript操作BOM
window对象的属性: history: 方法: back() 加载 history 对象列表中的前一个URL forward() 加载 history 对象列表中的下一个URL go() 加载 h ...
- 全面解读Group Normalization,对比BN,LN,IN
前言 Face book AI research(FAIR)吴育昕-何恺明联合推出重磅新作Group Normalization(GN),提出使用Group Normalization 替代深度学习里 ...
- 【洛谷】P5024 保卫王国 (倍增)
前言 传送门 很多人写了题解了,我就懒得写了,推荐一篇博客 那就分享一下我的理解吧(说得好像有人看一样 对于每个点都只有选与不选两种情况,所以直接用倍增预处理出来两种情况的子树之内,子树之外的最值,最 ...
- 解决Shell脚本$'\r': command not found问题
造成这个问题的原因是Windows下的空行,我们只需要把文件转成unix就好 Centos下,执行yum install dos2unix,然后dos2unix [file],再执行shell命令就好 ...
- 重新学习MySQL数据库12:从实践sql语句优化开始
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/a724888/article/details/79394168 本文不堆叠网上海量的sql优化技巧或 ...
- Mysql问题1862
使用Navicat连接MySQL数据库出现1862错误(1862:Your password has expired.To log in you must change it change it us ...
- 【翻译】Flink Table Api & SQL —Streaming 概念 ——动态表
本文翻译自官网:Flink Table Api & SQL 动态表 https://ci.apache.org/projects/flink/flink-docs-release-1.9/de ...
- EasyNVR网页Chrome无插件播放摄像机视频功能二次开发之云台控制接口示例代码
随着多媒体技术和网络通信技术的迅速发展,视频监控技术在电力系统.电信行业.工业监控.工地.城市交通.水利系统.社区安防等领域得到越来越广泛的应用.摄像头直播视频监控通过网络直接连接,可达到的世界任何角 ...
- Spring MVC -- MVC设计模式(演示4个基于MVC框架的案例)
对于简单的Java Web项目,我们的项目仅仅包含几个jsp页面,由于项目比较小,我们通常可以通过链接方式进行jsp页面间的跳转. 但是如果是一个中型或者大型的项目,上面那种方式就会带来许多维护困难, ...