loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~
#include <bits/stdc++.h>
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
const ll mod=998244353;
inline ll qpow(ll x,ll y)
{
ll tmp=1;
x=x%mod;
y=(y%(mod-1)+mod-1)%(mod-1);
for(;y;y>>=1,x=x*x%mod) if(y&1) tmp=tmp*x%mod;
return tmp;
}
inline ll INV(int x) { return qpow(x,mod-2); }
ll n;
int s,a[5];
ll F(ll i,ll x)
{
ll re=qpow(x+s,n);
return re*qpow(x,i-n)%mod;
}
int main()
{
setIO("input");
int i,j,T;
scanf("%d",&T);
while(T--)
{
scanf("%lld%d",&n,&s);
for(i=0;i<4;++i) scanf("%d",&a[i]);
int w=qpow(3,(mod-1)/4), inv=qpow(w,mod-2);
int ans=0;
for(i=0;i<=3;++i) for(int k=0,t=1;k<=3;++k,t=1ll*t*inv%mod)
ans=(ans+1ll*F(i,t)*a[i]%mod)%mod;
ans=1ll*ans*qpow(4,mod-2)%mod;
printf("%d\n",ans);
}
return 0;
}
loj #6485. LJJ 学二项式定理 单位根反演的更多相关文章
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- LOJ #6485 LJJ 学二项式定理
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...
- loj #6485. LJJ 学二项式定理 (模板qwq)
$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...
- LOJ 6485 LJJ学多项式
前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\rig ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- LOJ6485 LJJ 学二项式定理 解题报告
LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...
随机推荐
- tensorflow-简单的神经网络
本次笔记是关于tensorflow1的代码,由于接触不久没有跟上2.0版本,这个代码是通过简单的神经网络做一个非线性回归任务,(如果用GPU版本的话第一次出错就重启) import tensorflo ...
- go 缓冲IO
package main import ( "bufio" "fmt" "os" "strings" ) func ma ...
- win7远程服务器发生身份验证错误,要求的函数不受支持
远程服务器发生身份验证错误,要求的函数不受支持,远程登录服务器以前都是正常的,今天登录远程桌面就一直是这样的错误.记录一下解决方法. 方法一:卸载补丁KB41037181.打开控制面板,找到“程序和功 ...
- webapi session
webapi中使用session 修改global.cs里面的内容 using System; using System.Web; using System.Web.Routing; using Sy ...
- mysql数据库备份之主从同步配置
主从同步意义? 主从同步使得数据可以从一个数据库服务器复制到其他服务器上,在复制数据时,一个服务器充当主服务器(master),其余的服务器充当从服务器(slave).因为复制是异步进行的,所以从服务 ...
- Python接口自动化基础---cookie绕过登录
使用fiddler获取登录cookie 对比登录前和登录后的cookis 登录前 登录后: 获得cookie之后,使用cookie访问,就可以获取登录态: import requests url='h ...
- springboot中常用的依赖
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...
- 在angular 8中使用 less
在angular 6中使用 less 新项目 ng new [appname] --style less 已有的项目 修改 *.css 文件及引用处后缀名为 less并在 angular.json 文 ...
- 行内块inline-block元素之间出现空白间隙原因及解决办法
首先,来看下具体的问题,下面是用inline-block布局实现的两边固定宽度,中间自适应的html代码: 1 2 3 4 5 6 7 8 9 <section class="layo ...
- css设置全局变量和局部变量
在我们使用less或者sass时常常会使用到局部变量和全局变量,其实在我们使用css做开发时也可以定义全局变量和局部 变量来简化我们的开发效率,很简单也很实用:1.设置全局变量只需要在我们的根引用的c ...