题意:求解A+A^2+...+A^k

题解:

1)利用通和公式,原式=(A^k+1 - A)(A - O)^-1 时间复杂度O(n^3lgk)

2)递归求解,A+A^2+...+A^k=(A+A^2+...+A^k/2)+A^k/2(A+A^2+...+A^k/2) 时间复杂度O(n^3lgk^2)

逆矩阵貌似繁琐,直接用第二种方法写的

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <utility>
#include <vector>
#include <queue>
#include <map>
#include <set>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x)) using namespace std; int n,MOD,k; struct Matrix{
int n,m;
vector< vector<int> >a;
Matrix(){};
Matrix(const Matrix & T) : n(T.n),m(T.m)
{
a.resize(n);
for(int i=; i<n; i++)
{
a[i].resize(m);
for(int j=; j<m; j++)
a[i][j]=T.a[i][j];
}
}
Matrix(int N, int M)
{
n=N;
m=M;
a.resize(N);
for(int i=; i<N; i++)
a[i].resize(M);
}
Matrix & operator=(const Matrix &T)
{
n=T.n;
m=T.m;
a.resize(n);
for(int i=; i<n; i++)
{
a[i].resize(m);
for(int j=; j<m; j++)
a[i][j]=T.a[i][j];
}
return *this;
}
Matrix operator+(const Matrix &T) const
{
Matrix tmp(n,m);
for(int i=; i<n; i++)
for(int j=; j<m; j++)
tmp.a[i][j]=(a[i][j]+T.a[i][j])%MOD;
return tmp;
}
Matrix operator*(const Matrix &T) const
{
Matrix tmp(n,T.m);
for(int i=; i<n; i++)
for(int j=; j<T.m; j++)
for(int k=; k<m; k++)
tmp.a[i][j]=(tmp.a[i][j]+a[i][k]*T.a[k][j])%MOD;
return tmp;
}
void input(int N, int M)
{
n=N;
m=M;
a.resize(n);
for(int i=; i<n; i++)
{
a[i].resize(m);
for(int j=; j<m; j++)
scanf("%d",&a[i][j]);
}
}
void output()
{
for(int i=; i<n; i++)
{
for(int j=; j<m; j++)
printf("%d ",a[i][j]);
printf("\n");
}
}
Matrix pow_m(int N)//矩阵满足n=m 矩阵快速幂
{
Matrix ret(n,n),tmp(*this);
for(int i=; i<n; i++)
ret.a[i][i]=;
while(N)
{
if(N&) ret=ret*tmp;
tmp=tmp*tmp;
N>>=;
}
return ret;
}
}ans,A; void work(int k)
{
if(k==)
{
ans=A;
return;
}
if(k==)
{
ans=A.pow_m();
return;
}
work(k/);
ans=ans*(A.pow_m()+A.pow_m(k/));
if(k&) ans=ans+A.pow_m(k);
} int main()
{
scanf("%d%d%d",&n,&k,&MOD);
A.input(n,n);
work(k);
ans.output();
return ;
}

太刁了

看到这种解法。

|A O|^k+1 =|A^k+1    O|

|E E|    |A^k+...+A^0 E|

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <utility>
#include <vector>
#include <queue>
#include <map>
#include <set>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x)) using namespace std; int n,MOD,k; struct Matrix{
int n,m;
vector< vector<int> >a;
Matrix(){};
Matrix(const Matrix & T) : n(T.n),m(T.m)
{
a.resize(n);
for(int i=; i<n; i++)
{
a[i].resize(m);
for(int j=; j<m; j++)
a[i][j]=T.a[i][j];
}
}
Matrix(int N, int M)
{
n=N;
m=M;
a.resize(N);
for(int i=; i<N; i++)
a[i].resize(M);
}
Matrix & operator=(const Matrix &T)
{
n=T.n;
m=T.m;
a.resize(n);
for(int i=; i<n; i++)
{
a[i].resize(m);
for(int j=; j<m; j++)
a[i][j]=T.a[i][j];
}
return *this;
}
Matrix operator+(const Matrix &T) const
{
Matrix tmp(n,m);
for(int i=; i<n; i++)
for(int j=; j<m; j++)
tmp.a[i][j]=(a[i][j]+T.a[i][j])%MOD;
return tmp;
}
Matrix operator*(const Matrix &T) const
{
Matrix tmp(n,T.m);
for(int i=; i<n; i++)
for(int j=; j<T.m; j++)
for(int k=; k<m; k++)
tmp.a[i][j]=(tmp.a[i][j]+a[i][k]*T.a[k][j])%MOD;
return tmp;
}
void input(int N, int M)
{
n=N;
m=M;
a.resize(n);
for(int i=; i<n; i++)
{
a[i].resize(m);
for(int j=; j<m; j++)
scanf("%d",&a[i][j]);
}
}
void output()
{
for(int i=; i<n; i++)
for(int j=; j<m; j++)
if(j<m-)
printf("%d ",a[i][j]);
else
printf("%d\n",a[i][j]);
}
Matrix pow_m(int N)//矩阵满足n=m 矩阵快速幂
{
Matrix ret(n,n),tmp(*this);
for(int i=; i<n; i++)
ret.a[i][i]=;
while(N)
{
if(N&) ret=ret*tmp;
tmp=tmp*tmp;
N>>=;
}
return ret;
}
}; int main()
{
scanf("%d%d%d",&n,&k,&MOD);
Matrix A(*n,*n);
for(int i=; i<n; i++)
for(int j=; j<n; j++)
scanf("%d",&A.a[i][j]); for(int i=; i<*n; i++)
A.a[n+i%n][i]=;
A=A.pow_m(k+); for(int i=; i<n; i++)
for(int j=; j<n; j++)
{
if(i==j) A.a[n+i][j]=(A.a[n+i][j]+MOD-)%MOD;
if(j<n-)
printf("%d ",A.a[n+i][j]);
else
printf("%d\n",A.a[n+i][j]);
}
return ;
}

POJ 3233 矩阵乘法的更多相关文章

  1. poj 3233(矩阵高速幂)

    题目链接:http://poj.org/problem?id=3233. 题意:给出一个公式求这个式子模m的解: 分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点.本题k的值非常大.所以要用 ...

  2. poj 3233 矩阵快速幂

    地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方  结果模m的相加和是多少 Given a n × n matrix A and a positive i ...

  3. 矩阵儿快速幂 - POJ 3233 矩阵力量系列

    不要管上面的标题的bug 那是幂的意思,不是力量... POJ 3233 Matrix Power Series 描述 Given a n × n matrix A and a positive in ...

  4. POJ 3213 矩阵乘法(优化)

    思路: 1.暴力出奇迹 n=1000 n^3矩阵乘法竟然能卡过...(Tips:不要乱写读入优化,这玩意儿加了超时,不加AC--) 2. 注意题目中的"最多只能有一个地方不一样,," ...

  5. Matrix Power Series POJ - 3233 矩阵幂次之和。

    矩阵幂次之和. 自己想着想着就想到了一个解法,但是还没提交,因为POJ崩了,做了一个FIB的前n项和,也是用了这个方法,AC了,相信是可以得. 提交了,是AC的 http://poj.org/prob ...

  6. poj 3233 矩阵快速幂+YY

    题意:给你矩阵A,求S=A+A^1+A^2+...+A^n sol:直接把每一项解出来显然是不行的,也没必要. 我们可以YY一个矩阵: 其中1表示单位矩阵 然后容易得到: 可以看出这个分块矩阵的左下角 ...

  7. POJ ---3070 (矩阵乘法求Fibonacci 数列)

    Fibonacci   Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2  ...

  8. POJ 3233 (矩阵)

    题意:对于矩阵A,求A^1 + ...... + A^k 按照矩阵十大经典题的思路大致做了下. 在k为奇数时:  A^( k / 2+1)+ 1) * (A^1 + ....... A^(k/2)) ...

  9. POJ - 3233 矩阵套矩阵

    题意:给你矩阵\(A\),求\(S=\sum_{i=1}^{k}A^i\) 构造矩阵 \[ \begin{bmatrix} A & E \\ 0 & E\\ \end{bmatrix} ...

随机推荐

  1. iOS开发 适配iOS10以及Xcode8-b

    现在在苹果的官网上,我们已经可以下载到Xcode8的GM版本了,加上9.14日凌晨,苹果就要正式推出iOS10系统的推送了,在此之际,iOS10的适配已经迫在眉睫啦,不知道Xcode8 beat版本, ...

  2. 【转】android 内存泄漏相关收藏博客。

    关于android内存泄漏的研究   博客建了几个月,都没有去写,一是因为当时换工作,然后又是新入职(你懂的,好好表现),比较忙:二是也因为自己没有写博客的习惯了.现在还算是比较稳定了,加上这个迭代基 ...

  3. Google history

    传说,硅谷的公司在和微软的竞争中一直处于下风,不论在市场,人才,还是在打官司上,直到婴儿巨人Baby Giant谷歌的出现,历史才出现前所未有的改变.Google以一个强大的挑战者的身份出现在人们的视 ...

  4. 2013 Asia Chengdu Regional Contest

    hdu 4786 Fibonacci Tree http://acm.hdu.edu.cn/showproblem.php?pid=4786 copyright@ts 算法源于ts,用最小生成树可以求 ...

  5. Introduction To Monte Carlo Methods

    Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal ...

  6. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

  7. 有n个人围成一圈,顺序排号。从第一个人开始报数(从1到3报数),凡报到3的人退出圈子,问最后留下的是原来第几号的那位。

    先写我的思路,没有用指针的做法.如果你用的是VC,把第六行去掉. #include<stdio.h> #include<stdlib.h> int main() { setvb ...

  8. iOS开发中@selector的理解

    @selector 是什么? 1一种类型 SEL2代表你要发送的消息(方法), 跟字符串有点像, 也可以互转.: NSSelectorFromString() / NSSelectorFromStri ...

  9. Oracle - 位图索引的适用条件

    位图索引的适用条件 位图索引适合只有几个固定值的列,如性别.婚姻状况.行政区等等,而身份证号这种类型不适合用位图索引. 位图索引适合静态数据,而不适合索引频繁更新的列. 举个例子,有这样一个字段bus ...

  10. Mysql 1030 Got error -1 from storage engine 错误解决

    检查你的my.cnf或my.ini,里面会有一个参数innodb_force_recovery,你看看他的值,默认是没有这个参数,没有的话,他的默认值是0,这个参数的值如果大于0,innodb会被禁止 ...