# 决策树

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
import zipfile
#压缩节省空间
z=zipfile.ZipFile('ad-dataset.zip')
# df=pd.read_csv(z.open(z.namelist()[0]),header=None,low_memory=False)
# df = pd.read_csv(z.open(z.namelist()[0]), header=None, low_memory=False)
df=pd.read_csv('.\\tree_data\\ad.data',header=None)
explanatory_variable_columns=set(df.columns.values)
response_variable_column=df[len(df.columns.values)-1]
#最后一列是代表的标签类型
explanatory_variable_columns.remove(len(df.columns)-1)
y=[1 if e =='ad.' else 0 for e in response_variable_column]
X=df.loc[:,list(explanatory_variable_columns)]
#匹配?字符,并把值转化为-1
X.replace(to_replace=' *\?', value=-1, regex=True, inplace=True)
X_train,X_test,y_train,y_test=train_test_split(X,y)
#用信息增益启发式算法建立决策树
pipeline=Pipeline([('clf',DecisionTreeClassifier(criterion='entropy'))])
parameters = {
'clf__max_depth': (150, 155, 160),
'clf__min_samples_split': (1, 2, 3),
'clf__min_samples_leaf': (1, 2, 3)
}
#f1查全率和查准率的调和平均
grid_search=GridSearchCV(pipeline,parameters,n_jobs=-1,
verbose=1,scoring='f1')
grid_search.fit(X_train,y_train)
print '最佳效果:%0.3f'%grid_search.best_score_
print '最优参数'
best_parameters=grid_search.best_estimator_.get_params()
best_parameters

输出结果:

Fitting 3 folds for each of 27 candidates, totalling 81 fits
 
[Parallel(n_jobs=-1)]: Done  46 tasks      | elapsed:   21.0s
[Parallel(n_jobs=-1)]: Done 81 out of 81 | elapsed: 34.7s finished
 
最佳效果:0.888
最优参数
Out[123]:
{'clf': DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=160,
max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=3, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best'),
'clf__class_weight': None,
'clf__criterion': 'entropy',
'clf__max_depth': 160,
'clf__max_features': None,
'clf__max_leaf_nodes': None,
'clf__min_samples_leaf': 1,
'clf__min_samples_split': 3,
'clf__min_weight_fraction_leaf': 0.0,
'clf__presort': False,
'clf__random_state': None,
'clf__splitter': 'best',
'steps': [('clf',
DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=160,
max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=3, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best'))]}
for param_name in sorted(parameters.keys()):
print ('\t%s:%r'%(param_name,best_parameters[param_name]))
predictions=grid_search.predict(X_test)
print classification_report(y_test,predictions)

输出结果:

clf__max_depth:150
clf__min_samples_leaf:1
clf__min_samples_split:1
             precision    recall  f1-score   support

0       0.97      0.99      0.98       703
          1       0.91      0.84      0.87       117

avg / total       0.96      0.96      0.96       820

df.head()

输出结果;

  0 1 2 3 4 5 6 7 8 9 ... 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
0 125 125 1.0 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
1 57 468 8.2105 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
2 33 230 6.9696 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
3 60 468 7.8 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
4 60 468 7.8 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.

 # 决策树集成

#coding:utf-8
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV df=pd.read_csv('.\\tree_data\\ad.data',header=None,low_memory=False)
explanatory_variable_columns=set(df.columns.values)
response_variable_column=df[len(df.columns.values)-1]
df.head()
  0 1 2 3 4 5 6 7 8 9 ... 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
0 125 125 1.0 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
1 57 468 8.2105 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
2 33 230 6.9696 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
3 60 468 7.8 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
4 60 468 7.8 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 ad.
#The last column describes the targets(去掉最后一列)
explanatory_variable_columns.remove(len(df.columns.values)-1)
y=[1 if e=='ad.' else 0 for e in response_variable_column]
X=df.loc[:,list(explanatory_variable_columns)]
#置换有?的为-1
X.replace(to_replace=' *\?', value=-1, regex=True, inplace=True)
X_train,X_test,y_train,y_test=train_test_split(X,y)
pipeline=Pipeline([('clf',RandomForestClassifier(criterion='entropy'))])
parameters = {
'clf__n_estimators': (5, 10, 20, 50),
'clf__max_depth': (50, 150, 250),
'clf__min_samples_split': (1, 2, 3),
'clf__min_samples_leaf': (1, 2, 3)
}
grid_search = GridSearchCV(pipeline,parameters,n_jobs=-1,verbose=1,scoring='f1')
grid_search.fit(X_train,y_train)
print(u'最佳效果:%0.3f'%grid_search.best_score_)
print u'最优的参数:'
best_parameters=grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
print('\t%s:%r'%(param_name,best_parameters[param_name]))

输出结果:

最佳效果:0.929 最优的参数: clf__max_depth:250 clf__min_samples_leaf:1 clf__min_samples_split:3 clf__n_estimators:50
predictions=grid_search.predict(X_test)
print classification_report(y_test,predictions)

输出结果:

precision    recall  f1-score   support

0       0.98      1.00      0.99       705
          1       0.97      0.90      0.93       115

avg / total       0.98      0.98      0.98       820

thon_sklearn机器学习库学习笔记(四)decision_tree(决策树)的更多相关文章

  1. muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制

    目录 muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制 eventfd的使用 eventfd系统函数 使用示例 EventLoop对eventfd的封装 工作时序 runInLoo ...

  2. Python_sklearn机器学习库学习笔记(四)decision_tree(决策树)

    # 决策树 import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.cross_validat ...

  3. 【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用

    文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分 ...

  4. Python_sklearn机器学习库学习笔记(一)_Feature Extraction and Preprocessing(特征提取与预处理)

    # Extracting features from categorical variables #Extracting features from categorical variables 独热编 ...

  5. Python_sklearn机器学习库学习笔记(七)the perceptron(感知器)

    一.感知器 感知器是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的,其灵感来自于对人脑的仿真,大脑是处理信息的神经元(neurons)细胞和链接神经元细胞进行信息传 ...

  6. Python_sklearn机器学习库学习笔记(一)_一元回归

    一.引入相关库 %matplotlib inline import matplotlib.pyplot as plt from matplotlib.font_manager import FontP ...

  7. Python_sklearn机器学习库学习笔记(三)logistic regression(逻辑回归)

    # 逻辑回归 ## 逻辑回归处理二元分类 %matplotlib inline import matplotlib.pyplot as plt #显示中文 from matplotlib.font_m ...

  8. Python_sklearn机器学习库学习笔记(五)k-means(聚类)

    # K的选择:肘部法则 如果问题中没有指定 的值,可以通过肘部法则这一技术来估计聚类数量.肘部法则会把不同 值的成本函数值画出来.随着 值的增大,平均畸变程度会减小:每个类包含的样本数会减少,于是样本 ...

  9. Python_sklearn机器学习库学习笔记(六) dimensionality-reduction-with-pca

    # 用PCA降维 #计算协方差矩阵 import numpy as np X=[[2,0,-1.4], [2.2,0.2,-1.5], [2.4,0.1,-1], [1.9,0,-1.2]] np.c ...

随机推荐

  1. JAVA 教程推荐

    JAVA 教程 学习地址:http://www.manongjc.com/mysql/mysql_tutorial.html Java 简介 Java是由Sun Microsystems公司于1995 ...

  2. IntelliJ IDEA 使用说明(For Eclipse user)

    IDEA和Eclipse主要在用户界面,编译方法和快捷键上有所差别. 1. 用户界面 1.1 No workspace IDEA 的Project相当于Eclipse的workspace,具体概念对比 ...

  3. 慕课网-Java入门第一季-6-7 使用 Arrays 类操作 Java 中的数组

    来源:http://www.imooc.com/code/1556 Arrays 类是 Java 中提供的一个工具类,在 java.util 包中.该类中包含了一些方法用来直接操作数组,比如可直接实现 ...

  4. ios 给图片添加水印

    //第一种添加水印方法 -(UIImage *)watermarkImage:(UIImage *)img withName:(NSString *)name{ NSString* mark = na ...

  5. C# 计算两个字符串的相似度

    我们在做数据系统的时候,经常会用到模糊搜索,但是,数据库提供的模糊搜索并不具备按照相关度进行排序的功能. 现在提供一个比较两个字符串相似度的方法. 通过计算出两个字符串的相似度,就可以通过Linq在内 ...

  6. xxx.app已损坏,打不开.你应该将它移到废纸篓 macOS 10.12 Sierra

    出现这个问题的解决方法: 修改系统配置:系统偏好设置... -> 安全性与隐私.修改为任何来源 如果没有这个选项的话 (macOS Sierra 10.12) ,打开终端,执行 sudo spc ...

  7. excel 怎么去掉单元格中第一个空格或其他特定符号/Excel excel中批量去掉表格中首字母前的空格或特定符号

    =IF(FIND(" ",A160)>1,A160,MID(A160,FIND(" ",A160)+1,LEN(A160)-FIND(" &qu ...

  8. cs11_c++_lab3

    Matrix.hh class Matrix { int row; int col; int *p; void copy(const Matrix &m); void clearup(); p ...

  9. switch能使用的数据类型有6种

    byte.short.char.int.String.枚举

  10. ArcGIS api fo silverlight学习三(利用ElementLayer实现鼠标悬浮弹出自定义窗体)

    接着上一节继续学习,本节主要是利用ElementLayer实现鼠标悬浮弹出自定义窗体 参考博文:http://www.cnblogs.com/luxiaoxun/p/3322218.html 一.新建 ...